Curvature is simply expressed as the second derivative of the plate deflection in prior studies of post-buckling of plates. It is shown in this paper that the higher-order terms in curvature should be retained, consistent with Koiter's post-buckling theory. This paper also solves the dilemma whether the increase of post-buckling load is proportional to the square of the ratio of the post-buckling deflection w to the plate thickness t, (w/t)2, as in most prior studies, or to the characteristic in-plane length L of the plate, (w/L)2, as discovered in some recent studies.

References

References
1.
Su
,
Y.
,
Wu
,
J.
,
Fan
,
Z.
,
Hwang
,
K.-C.
,
Song
,
J.
,
Huang
,
Y.
, and
Rogers
,
J.
,
2012
, “
Postbuckling Analysis and Its Application to Stretchable Electronics
,”
J. Mech. Phys. Solids
,
60
(
3
), pp.
487
508
.
2.
Koiter
,
W. T.
,
1945
, “
On the Stability of Elastic Equilibrium (in Dutch)
,”
Doctoral thesis
, Delft University, H.J. Paris, Amsterdam, The Netherlands (English translation (a) NASA TT-F10.833 (1967) and (b) AFFDL-TR-70-25 (1970)).
3.
Koiter
,
W. T.
,
1963
, “
Elastic Stability and Post-Buckling Behavior
,”
Nonlinear Problems
,
R. E.
Langer
, ed.,
University of Wisconsin
,
Madison, WI
, pp.
257
275
.
4.
von Karman
,
T.
, and
Tsien
,
H. S.
,
1941
, “
The Buckling of Thin Cylindrical Shells Under Axial Compression
,”
J. Aeronaut. Sci.
,
8
(
8
), pp.
303
312
.
5.
Budiansky
,
B.
,
1973
, “
Theory of Buckling and Postbuckling Behavior of Elastic Structures
,”
Adv. Appl. Mech.
,
14
, pp.
1
65
.
6.
Niordson
,
F. I.
,
1985
,
Shell Theory
,
Elsevier Science
,
Amsterdam
.
7.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
,
1961
,
Theory of Elastic Stability
,
2nd ed.
,
McGraw-Hill
,
New York
.
8.
Friedrichs
,
K.
, and
Stoker
,
J.
,
1942
, “
Buckling of the Circular Plate Beyond the Critical Thrust
,”
ASME J. Appl. Mech.
,
9
, pp.
A7
A14
.
9.
Shen
,
H.
, and
Zhang
,
J.
,
1988
, “
Perturbation Analyses for the Postbuckling of Simply Supported Rectangular Plates Under Uniaxial Compression
,”
Appl. Math. Mech.
,
9
(
8
), pp.
793
804
.
10.
Chen
,
C.
,
Tao
,
W.
,
Su
,
Y.
,
Wu
,
J.
, and
Song
,
J.
,
2013
, “
Lateral Buckling of Interconnects in a Noncoplanar Mesh Design for Stretchable Electronics
,”
ASME J. Appl. Mech.
,
80
(
4
), p.
041031
.
11.
Chen
,
X.
, and
Meguid
,
S. A.
,
2015
, “
Asymmetric Bifurcation of Initially Curved Nanobeam
,”
ASME J. Appl. Mech.
,
82
(
9
), p.
091003
.
12.
Cheng
,
H.
, and
Song
,
J.
,
2013
, “
A Simply Analytic Study of Buckled Thin Films on Compliant Substrates
,”
ASME J. Appl. Mech.
,
81
(
2
), p.
024501
.
13.
Cleary
,
J.
, and
Su
,
H.-J.
,
2015
, “
Modeling and Experimental Validation of Actuating a Bistable Buckled Beam Via Moment Input
,”
ASME J. Appl. Mech.
,
82
(
5
), p.
051005
.
14.
Hasanyan
,
A. D.
, and
Waas
,
A. M.
,
2015
, “
On the Buckling of a Two-Dimensional Micropolar Strip
,”
ASME J. Appl. Mech.
,
82
(
4
), p.
041006
.
15.
Kalathur
,
H.
,
Hoang
,
T. M.
,
Lakes
,
R. S.
, and
Drugan
,
W. J.
,
2013
, “
Buckling Mode Jump at Very Close Load Values in Unattached Flat-End Columns: Theory and Experiment
,”
ASME J. Appl. Mech.
,
81
(
4
), p.
041010
.
16.
Seffen
,
K. A.
, and
Stott
,
S. V.
,
2014
, “
Surface Texturing Through Cylinder Buckling
,”
ASME J. Appl. Mech.
,
81
(
6
), p.
061001
.
17.
Semenyuk
,
N. P.
,
Morenko
,
A. I.
, and
Smith
,
M. J. A.
,
2013
, “
On the Stability and Postbuckling Behavior of Shells With Corrugated Cross Sections Under External Pressure
,”
ASME J. Appl. Mech.
,
81
(
1
), p.
011002
.
18.
Wang
,
J.-W.
,
Li
,
B.
,
Cao
,
Y.-P.
, and
Feng
,
X.-Q.
,
2015
, “
Surface Wrinkling Patterns of Film–Substrate Systems With a Structured Interface
,”
ASME J. Appl. Mech.
,
82
(
5
), p.
051009
.
19.
Kashyap
,
A.
,
Thomas
,
B.
, and
Julien
,
M.
,
2016
, “
Finite-Element Analysis of Rate-Dependent Buckling and Postbuckling of Viscoelastic-Layered Composites
,”
ASME J. Appl. Mech.
,
83
(
3
), p.
031005
.
20.
Wang
,
L.
, and
Lu
,
N.
, 2016, “
Conformability of a Thin Elastic Membrane Laminated on a Soft Substrate With Slightly Wavy Surface
,”
ASME J. Appl. Mech.
,
83
(
4
), p.
041007
.
21.
Wu
,
J.
,
Hwang
,
K.
, and
Huang
,
Y.
,
2008
, “
An Atomistic-Based Finite-Deformation Shell Theory for Single-Wall Carbon Nanotubes
,”
J. Mech. Phys. Solids
,
56
(
1
), pp.
279
292
.
22.
Wu
,
J.
,
Hwang
,
K.
, and
Huang
,
Y.
,
2009
, “
A Shell Theory for Carbon Nanotubes Based on the Interatomic Potential and Atomic Structure
,”
Adv. Appl. Mech.
,
43
, pp.
1
68
.
23.
Zhang
,
C.
,
Wu
,
J.
, and
Hwang
,
K.
,
2015
, “
Hyperelastic Thin Shells: Equilibrium Equations and Boundary Conditions
,”
ASME J. Appl. Mech.
,
82
(
9
), p.
094502
.
24.
Koiter
,
W. T.
,
1960
, “
Stability and Postcritical Behavior of Elastic Systems
,”
Mekhanika, Lecture at the Congress on Theoretical and Applied Mechanics, Moscow (in Russian)
,
5
(
63
), pp.
99
110
.
25.
Zhang
,
C.
,
2015
, “
Initial Postbuckling Theory of Plates and Shells
,” Doctoral dissertation, Tsinghua University, Beijing, China.
You do not currently have access to this content.