Quantifying interactions between motors and filaments is important for the understanding of intriguing emergent behaviors of motor–filament systems, which play critical roles in various biological processes. Recently, unusually high detachment rates of a myosin from actin were obtained with a force spectroscopy technique of an unprecedented spatial–temporal resolution. Here, we suggest that these high apparent detachment rates may be due to the inherent coupling between bond breaking and state transition, which can be common in protein–protein interactions. Based on a kinetic model for the chemomechanical cycle of single myosin, rates of bond breaking between myosin and actin at different nucleotide states are systematically calculated. These quantitative results indicate that myosins may adopt much higher transition rates than bond breaking rates at different nucleotide states under physiological conditions when applied forces are relatively low. This work also indicates that accurate biophysical models considering both protein unbinding dynamics and protein state transitions are required in order to properly interpret the experimental data when the ultrafast force-clamp spectroscopy technique is employed to study, for example, the DNA–protein interactions.

References

References
1.
Hanson
,
J.
, and
Huxley
,
H. E.
,
1953
, “
Structural Basis of the Cross-Striations in Muscle
,”
Nature
,
172
(
4377
), pp.
530
532
.
2.
Huxley
,
A. F.
,
1957
, “
Muscle Structure and Theories of Contraction
,”
Prog. Biophys. Mol. Biol.
,
7
, pp.
255
318
.
3.
Huxley
,
H. E.
,
1969
, “
Mechanism of Muscular Contraction
,”
Science
,
164
(
3886
), pp.
1356
1366
.
4.
Cooke
,
R.
,
1997
, “
Actomyosin Interaction in Striated Muscle
,”
Physiol. Rev.
,
77
(
3
), pp.
671
697
.
5.
Hill
,
A. V.
,
1938
, “
The Heat of Shortening and the Dynamic Constants of Muscle
,”
Proc. R. Soc. B Biol. Sci.
,
126
(
843
), pp.
136
195
.
6.
Houdusse
,
A.
,
Szent-Gyorgyi
,
A. G.
, and
Cohen
,
C.
,
2000
, “
Three Conformational States of Scallop Myosin S1
,”
Proc. Natl. Acad. Sci. U.S.A.
,
97
(
21
), pp.
11238
11243
.
7.
Irving
,
M.
,
Piazzesi
,
G.
,
Lucii
,
L.
,
Sun
,
Y. B.
,
Harford
,
J. J.
,
Dobbie
,
I. M.
,
Ferenczi
,
M. A.
,
Reconditi
,
M.
, and
Lombardi
,
V.
,
2000
, “
Conformation of the Myosin Motor During Force Generation in Skeletal Muscle
,”
Nat. Struct. Biol.
,
7
(
6
), pp.
482
485
.
8.
Piazzesi
,
G.
,
Lucii
,
L.
, and
Lombardi
,
V.
,
2002
, “
The Size and the Speed of the Working Stroke of Muscle Myosin and Its Dependence on the Force
,”
J. Physiol.
,
545
(
1
), pp.
145
151
.
9.
Reconditi
,
M.
,
Linari
,
M.
,
Lucii
,
L.
,
Stewart
,
A.
,
Sun
,
Y. B.
,
Boesecke
,
P.
,
Narayanan
,
T.
,
Fischetti
,
R. F.
,
Irving
,
T.
,
Piazzesi
,
G.
,
Irving
,
M.
, and
Lombardi
,
V.
,
2004
, “
The Myosin Motor in Muscle Generates a Smaller and Slower Working Stroke at Higher Load
,”
Nature
,
428
(
6982
), pp.
578
581
.
10.
Decostre
,
V.
,
Bianco
,
P.
,
Lombardi
,
V.
, and
Piazzesi
,
G.
,
2005
, “
Effect of Temperature on the Working Stroke of Muscle Myosin
,”
Proc. Natl. Acad. Sci. U.S.A.
,
102
(
39
), pp.
13927
13932
.
11.
Colombini
,
B.
,
Nocella
,
M.
,
Benelli
,
G.
,
Cecchi
,
G.
,
Griffiths
,
P. J.
, and
Bagni
,
M. A.
,
2009
, “
Reversal of the Myosin Power Stroke Induced by Fast Stretching of Intact Skeletal Muscle Fibers
,”
Biophys. J.
,
97
(
11
), pp.
2922
2929
.
12.
Davis
,
J. S.
, and
Epstein
,
N. D.
,
2009
, “
Mechanistic Role of Movement and Strain Sensitivity in Muscle Contraction
,”
Proc. Natl. Acad. Sci. U.S.A.
,
106
(
15
), pp.
6140
6145
.
13.
Linari
,
M.
,
Caremani
,
M.
, and
Lombardi
,
V.
,
2010
, “
A Kinetic Model That Explains the Effect of Inorganic Phosphate on the Mechanics and Energetics of Isometric Contraction of Fast Skeletal Muscle
,”
Proc. R. Soc. B Biol. Sci.
,
277
(
1678
), pp.
19
27
.
14.
Malnasi-Csizmadia
,
A.
, and
Kovacs
,
M.
,
2010
, “
Emerging Complex Pathways of the Actomyosin Powerstroke
,”
Trends Biochem. Sci.
,
35
(
12
), pp.
684
690
.
15.
Caremani
,
M.
,
Melli
,
L.
,
Dolfi
,
M.
,
Lombardi
,
V.
, and
Linari
,
M.
,
2013
, “
The Working Stroke of the Myosin II Motor in Muscle is Not Tightly Coupled to Release of Orthophosphate From Its Active Site
,”
J. Physiol.
,
591
(
20
), pp.
5187
5205
.
16.
Brunello
,
E.
,
Caremani
,
M.
,
Melli
,
L.
,
Linari
,
M.
,
Fernandez-Martinez
,
M.
,
Narayanan
,
T.
,
Irving
,
M.
,
Piazzesi
,
G.
,
Lombardi
,
V.
, and
Reconditi
,
M.
,
2014
, “
The Contributions of Filaments and Cross-Bridges to Sarcomere Compliance in Skeletal Muscle
,”
J. Physiol.
,
592
(
17
), pp.
3881
3899
.
17.
Chen
,
B.
,
2013
, “
Self-Regulation of Motor Force Through Chemomechanical Coupling in Skeletal Muscle Contraction
,”
ASME J. Appl. Mech.
,
80
(
5
), p.
051013
.
18.
Kaya
,
M.
, and
Higuchi
,
H.
,
2010
, “
Nonlinear Elasticity and an 8-nm Working Stroke of Single Myosin Molecules in Myofilaments
,”
Science
,
329
(
5992
), pp.
686
689
.
19.
Lymn
,
R.
, and
Taylor
,
E. W.
,
1971
, “
Mechanism of Adenosine Triphosphate Hydrolysis by Actomyosin
,”
Biochemistry
,
10
(
25
), pp.
4617
4624
.
20.
Veigel
,
C.
,
Molloy
,
J. E.
,
Schmitz
,
S.
, and
Kendrick-Jones
,
J.
,
2003
, “
Load-Dependent Kinetics of Force Production by Smooth Muscle Myosin Measured With Optical Tweezers
,”
Nat. Cell. Biol.
,
5
(
11
), pp.
980
986
.
21.
Capitanio
,
M.
,
Canepari
,
M.
,
Cacciafesta
,
P.
,
Lombardi
,
V.
,
Cicchi
,
R.
,
Maffei
,
M.
,
Pavone
,
F. S.
, and
Bottinelli
,
R.
,
2006
, “
Two Independent Mechanical Events in the Interaction Cycle of Skeletal Muscle Myosin With Actin
,”
Proc. Natl. Acad. Sci. U.S.A.
,
103
(
1
), pp.
87
92
.
22.
Guo
,
B.
, and
Guilford
,
W. H.
,
2006
, “
Mechanics of Actomyosin Bonds in Different Nucleotide States Are Tuned to Muscle Contraction
,”
Proc. Natl. Acad. Sci. U.S.A.
,
103
(
26
), pp.
9844
9849
.
23.
Dembo
,
M.
,
Torney
,
D.
,
Saxman
,
K.
, and
Hammer
,
D.
,
1988
, “
The Reaction-Limited Kinetics of Membrane-to-Surface Adhesion and Detachment
,”
Proc. R. Soc. B Biol. Sci.
,
234
(
1274
), pp.
55
83
.
24.
Thomas
,
W. E.
,
Trintchina
,
E.
,
Forero
,
M.
,
Vogel
,
V.
, and
Sokurenko
,
E. V.
,
2002
, “
Bacterial Adhesion to Target Cells Enhanced by Shear Force
,”
Cell
,
109
(
7
), pp.
913
923
.
25.
Marshall
,
B. T.
,
Long
,
M.
,
Piper
,
J. W.
,
Yago
,
T.
,
McEver
,
R. P.
, and
Zhu
,
C.
,
2003
, “
Direct Observation of Catch Bonds Involving Cell-Adhesion Molecules
,”
Nature
,
423
(
6936
), pp.
190
193
.
26.
Capitanio
,
M.
,
Canepari
,
M.
,
Maffei
,
M.
,
Beneventi
,
D.
,
Monico
,
C.
,
Vanzi
,
F.
,
Bottinelli
,
R.
, and
Pavone
,
F. S.
,
2012
, “
Ultrafast Force-Clamp Spectroscopy of Single Molecules Reveals Load Dependence of Myosin Working Stroke
,”
Nat. Methods
,
9
(
10
), pp.
1013
1019
.
27.
Bell
,
G. I.
,
1978
, “
Models for the Specific Adhesion of Cells to Cells
,”
Science
,
200
(
4342
), pp.
618
627
.
28.
Vogel
,
V.
, and
Sheetz
,
M. P.
,
2006
, “
Local Force and Geometry Sensing Regulate Cell Functions
,”
Nat. Rev. Mol. Cell Biol.
,
7
(
4
), pp.
265
275
.
29.
Vicente-Manzanares
,
M.
,
Ma
,
X.
,
Adelstein
,
R. S.
, and
Horwitz
,
A. R.
,
2009
, “
Non-Muscle Myosin II Takes Centre Stage in Cell Adhesion and Migration
,”
Nat. Rev. Mol. Cell Biol.
,
10
(
11
), pp.
778
790
.
30.
Jungbauer
,
S.
,
Gao
,
H.
,
Spatz
,
J. P.
, and
Kemkemer
,
R.
,
2008
, “
Two Characteristic Regimes in Frequency-Dependent Dynamic Reorientation of Fibroblasts on Cyclically Stretched Substrates
,”
Biophys. J.
,
95
(
7
), pp.
3470
3478
.
31.
Chen
,
B.
,
Kemkemer
,
R.
,
Deibler
,
M.
,
Spatz
,
J.
, and
Gao
,
H.
,
2012
, “
Cyclic Stretch Induces Cell Reorientation on Substrates by Destabilizing Catch Bonds in Focal Adhesions
,”
PLoS One
,
7
(
11
), p.
e48346
.
32.
Chen
,
B.
, and
Gao
,
H.
,
2011
, “
Motor Force Homeostasis in Skeletal Muscle Contraction
,”
Biophys. J.
,
101
(
2
), pp.
396
403
.
33.
Dillon
,
P. F.
,
Aksoy
,
M. O.
,
Driska
,
S. P.
, and
Murphy
,
R. A.
,
1981
, “
Myosin Phosphorylation and the Cross-Bridge Cycle in Arterial Smooth-Muscle
,”
Science
,
211
(
4481
), pp.
495
497
.
34.
Piazzesi
,
G.
,
Reconditi
,
M.
,
Linari
,
M.
,
Lucii
,
L.
,
Bianco
,
P.
,
Brunello
,
E.
,
Decostre
,
V.
,
Stewart
,
A.
,
Gore
,
D. B.
, and
Irving
,
T. C.
,
2007
, “
Skeletal Muscle Performance Determined by Modulation of Number of Myosin Motors Rather Than Motor Force or Stroke Size
,”
Cell
,
131
(
4
), pp.
784
795
.
35.
Piazzesi
,
G.
, and
Lombardi
,
V.
,
1995
, “
A Cross-Bridge Model That is Able to Explain Mechanial and Energetic Properties of Shortening Muscle
,”
Biophys. J.
,
68
(
5
), pp.
1966
1979
.
36.
Brenner
,
B.
,
1991
, “
Rapid Dissociation and Reassociation of Actomyosin Cross-Bridges During Force Generation: A Newly Observed Facet of Cross-Bridge Action in Muscle
,”
Proc. Natl. Acad. Sci. U.S.A.
,
88
(
23
), pp.
10490
10494
.
37.
Kitamura
,
K.
,
Tokunaga
,
M.
,
Iwane
,
A. H.
, and
Yanagida
,
T.
,
1999
, “
A Single Myosin Head Moves Along an Actin Filament With Regular Steps of 5.3 Nanometres
,”
Nature
,
397
, pp.
129
134
.
38.
Howard
,
J.
,
2001
,
Mechanics of Motor Proteins and the Cytoskeleton
,
Sinauer Associates
,
Sunderland, MA
.
39.
Li
,
L.
,
Yao
,
H.
, and
Wang
,
J.
,
2016
, “
Dynamic Strength of Molecular Bond Clusters Under Displacement- and Force-Controlled Loading Conditions
,”
ASME J. Appl. Mech.
,
83
(
2
), p.
021004
.
40.
Jonsdottir
,
F.
, and
Freund
,
L. B.
,
2014
, “
Large Amplitude Thermal Fluctuations of Confined Semiflexible Biopolymer Filaments
,”
ASME J. Appl. Mech.
,
81
(
11
), p.
111006
.
41.
Chen
,
X.
, and
Chen
,
B.
,
2014
, “
Probing the Instability of a Cluster of Slip Bonds Upon Cyclic Loads With a Coupled Finite Element Analysis and Monte Carlo Method
,”
ASME J. Appl. Mech.
,
81
(
11
), p.
111002
.
42.
Chen
,
B.
,
2014
, “
Probing the Effect of Random Adhesion Energy on Receptor-Mediated Endocytosis With a Semistochastic Model
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081013
.
43.
Naganathan
,
S. R.
,
Fuerthauer
,
S.
,
Nishikawa
,
M.
,
Juelicher
,
F.
, and
Grill
,
S. W.
,
2014
, “
Active Torque Generation by the Actomyosin Cell Cortex Drives Left–Right Symmetry Breaking
,”
eLife
,
3
, p.
e04165
.
You do not currently have access to this content.