A family of analytic solutions for the prediction of interlaminar stresses in angle-ply laminates has been developed and is presented in a unified form and as a unique set of solutions. The uniqueness of the formulation is demonstrated for the class of thermomechanical states of deformation for which the solutions are valid. These are shown to be limited to the specific cases wherein only two in-plane stress components and one interlaminar stress components are nonzero. Interlaminar shear stress in the angle-ply laminate subjected to thermomechanical loading conditions of uniaxial extension, uniform temperature change, and anticlastic bending is shown to make up the family of solutions in the unified formulation. Further, these are shown to comprise the complete set of the solutions and the conditions which control the limitations of this family of solutions are articulated.

References

1.
Hayashi
,
T.
,
1967
, “
Analytical Study of Interlaminar Shear Stresses in a Laminated Composite Plate
,”
Trans. Jpn. Soc. Aeronaut. Space Sci.
,
10
(
17
), pp.
43
48
.
2.
Puppo
,
A. H.
, and
Evensen
,
H. A.
,
1970
, “
Interlaminar Shear in Laminated Composites Under Generalized Plane Stress
,”
J. Compos. Mater.
,
4
, pp.
204
220
.
3.
Pipes
,
R. B.
, and
Pagano
,
N. J.
,
1974
, “
Interlaminar Stresses in Composite Laminates—An Approximate Elasticity Solution
,”
ASME J. Appl. Mech.
,
41
(
3
), pp.
668
672
.
4.
Pipes
,
R. B.
,
1970
, “
Interlaminar Stresses in Composite Laminates Under Uniform Axial Extension
,”
J. Compos. Mater.
,
4
(4), pp.
538
548
.
5.
Armanios
,
E. A.
, and
Li
,
J.
,
1991
, “
Interlaminar Stress Predictions for Laminated Composites Under Bending, Torsion and Their Combined Effect
,”
Compos. Eng.
,
1
(
5
), pp.
277
291
.
6.
Kassapoglou
,
C.
, and
Lagace
,
P. A.
,
1986
, “
An Efficient Method for the Calculation of Interlaminar Stresses in Composite Materials
,”
ASME J. Appl. Mech.
,
53
(
4
), pp.
744
750
.
7.
Salamon
,
N. J.
,
1978
, “
Interlaminar Stresses in a Layered Composite Laminate in Bending
,”
Fiber Sci. Technol.
,
11
(
4
), pp.
305
317
.
8.
Wang
,
S. S.
, and
Choi
,
I.
,
1982
, “
Boundary-Layer Effects in Composite Laminates—Part 1: Free-Edge Stress Singularities
,”
ASME J. Appl. Mech.
,
49
(
3
), pp.
541
548
.
9.
Wang
,
S. S.
, and
Choi
,
I.
,
1982
, “
Boundary-Layer Effects in Composite Laminates—Part 2: Free-Edge Stress Solutions and Basic Characteristics
,”
ASME J. Appl. Mech.
,
49
(
3
), pp.
549
560
.
10.
Pagano
,
N.
,
1978
, “
Stress Fields in Composite Laminates
,”
Int. J. Solids Struct.
,
14
(
5
), pp.
385
400
.
11.
Pagano
,
N. J.
,
1978
, “
Free Edge Stress Fields in Composite Laminates
,”
Int. J. Solids Struct.
,
14
(
3
), pp.
401
406
.
12.
Mittelstedt
,
C.
, and
Becker
,
W.
,
2007
, “
Free-Edge Effects in Composite Laminates
,”
ASME Appl. Mech. Rev.
,
60
(
5
), pp.
217
245
.
13.
Byron Pipes
,
R.
,
Goodsell
,
J.
,
Ritchey
,
A.
,
Dustin
,
J.
, and
Gosse
,
J.
,
2010
, “
Interlaminar Stresses in Composite Laminates: Thermoelastic Deformation
,”
Compos. Sci. Technol.
,
70
(
11
), pp.
1605
1611
.
14.
Pipes
,
B.
,
Goodsell
,
J.
,
Pagano
,
N.
, and
Kravchenko
,
O.
,
2012
, “
Interlaminar Stresses in Composite Laminates Subjected to Anticlastic Bending Deformation
,”
ASME J. Appl. Mech.
,
80
(4), pp.
1
7
.
15.
Lekhnitskii
,
S. G.
,
1963
,
Theory of Elasticity of an Anisotropic Elastic Body
,
Holden-Day
,
San Francisco, CA
.
You do not currently have access to this content.