One of the most crucial functionalities of load-bearing biological materials such as shell and bone is to protect their interior organs from damage and fracture arising from external dynamic impacts. However, how this class of materials effectively damp stress waves traveling through their structure is still largely unknown. With a self-similar hierarchical model, a theoretical approach was established to investigate the damping properties of load-bearing biological materials in relation to the biopolymer viscous characteristics, the loading frequency, the geometrical parameters of reinforcements, as well as the hierarchy number. It was found that the damping behavior originates from the viscous characteristics of the organic (biopolymer) constituents and is greatly tuned and enhanced by the staggered and hierarchical organization of the organic and inorganic constituents. For verification purpose, numerical experiments via finite-element method (FEM) have also been conducted and shown results consistent with the theoretical predictions. Furthermore, the results suggest that for the self-similar hierarchical design, there is an optimal aspect ratio of reinforcements for a specific loading frequency and a peak loading frequency for a specific aspect ratio of reinforcements, at which the damping capacity of the composite is maximized. Our findings not only add valuable insights into the stress wave damping mechanisms of load-bearing biological materials, but also provide useful guidelines for designing bioinspired synthetic composites for protective applications.

References

References
1.
Meyers
,
M. A.
,
Chen
,
P. Y.
,
Lin
,
A. Y. M.
, and
Seki
,
Y.
,
2008
, “
Biological Materials: Structure and Mechanical Properties
,”
Prog. Mater. Sci.
,
53
(
1
), pp.
1
206
.
2.
Rho
,
J. Y.
,
Kuhn Spearing
,
L.
, and
Zioupos
,
P.
,
1998
, “
Mechanical Properties and the Hierarchical Structure of Bone
,”
Med. Eng. Phys.
,
20
(
2
), pp.
92
102
.
3.
Weiner
,
S.
, and
Wagner
,
H. D.
,
1998
, “
The Material Bone: Structure-Mechanical Function Relations
,”
Annu. Rev. Mater. Sci.
,
28
(
1
), pp.
271
298
.
4.
Kastelic
,
J.
,
Galeski
,
A.
, and
Baer
,
E.
,
1978
, “
The Multicomposite Structure of Tendon
,”
Connect. Tissue Res.
,
6
(
1
), pp.
11
23
.
5.
Screen
,
H. R.
,
2009
, “
Hierarchical Approaches to Understanding Tendon Mechanics
,”
J. Biomech. Sci. Eng.
,
4
(
4
), pp.
481
499
.
6.
Puxkandl
,
R.
,
Zizak
,
I.
,
Paris
,
O.
,
Keckes
,
J.
,
Tesch
,
W.
,
Bernstorff
,
S.
,
Purslow
,
P.
, and
Fratzl
,
P.
,
2002
, “
Viscoelastic Properties of Collagen: Synchrotron Radiation Investigations and Structural Model
,”
Philos. Trans. R. Soc. London, Ser. B
,
357
(
1418
), pp.
191
197
.
7.
Menig
,
R.
,
Meyers
,
M.
,
Meyers
,
M.
, and
Vecchio
,
K.
,
2001
, “
Quasi-Static and Dynamic Mechanical Response of Strombus Gigas (Conch) Shells
,”
Mater. Sci. Eng. A
,
297
, pp.
203
211
.
8.
Jäger
,
I.
, and
Fratzl
,
P.
,
2000
, “
Mineralized Collagen Fibrils: A Mechanical Model With a Staggered Arrangement of Mineral Particles
,”
Biophys. J.
,
79
(
4
), pp.
1737
1746
.
9.
Gao
,
H.
,
Ji
,
B.
,
Jäger
,
I. L.
,
Arzt
,
E.
, and
Fratzl
,
P.
,
2003
, “
Materials Become Insensitive to Flaws at Nanoscale: Lessons From Nature
,”
Proc. Natl. Acad. Sci. U.S.A.
,
100
(
10
), pp.
5597
5600
.
10.
Ji
,
B.
, and
Gao
,
H.
,
2004
, “
Mechanical Properties of Nanostructure of Biological Materials
,”
J. Mech. Phys. Solids
,
52
(
9
), pp.
1963
1990
.
11.
Gao
,
H.
,
2006
, “
Application of Fracture Mechanics Concepts to Hierarchical Biomechanics of Bone and Bone-Like Materials
,”
Int. J. Fracture
,
138
, pp.
101
137
.
12.
Lei
,
H.
,
Zhang
,
Z.
, and
Liu
,
B.
,
2012
, “
Effect of Fiber Arrangement on Mechanical Properties of Short Fiber Reinforced Composites
,”
Compos. Sci. Technol.
,
72
(
4
), pp.
506
514
.
13.
Zhang
,
Z.
,
Zhang
,
Y. W.
, and
Gao
,
H.
,
2011
, “
On Optimal Hierarchy of Load-Bearing Biological Materials
,”
Proc. R. Soc. London, Ser. B
,
278
(
1705
), pp.
519
525
.
14.
Lei
,
H.
,
Zhang
,
Z.
,
Han
,
F.
,
Liu
,
B.
,
Zhang
,
Y.-W.
, and
Gao
,
H.
,
2013
, “
Elastic Bounds of Bioinspired Nanocomposites
,”
ASME J. Appl. Mech.
,
80
(
6
), p.
061017
.
15.
Zhang
,
Z.
,
Liu
,
B.
,
Huang
,
Y.
,
Hwang
,
K.
, and
Gao
,
H.
,
2010
, “
Mechanical Properties of Unidirectional Nanocomposites With Non-Uniformly or Randomly Staggered Platelet Distribution
,”
J. Mech. Phys. Solids
,
58
(
10
), pp.
1646
1660
.
16.
Lakes
,
R.
,
2002
, “
High Damping Composite Materials: Effect of Structural Hierarchy
,”
J. Compos. Mater.
,
36
(
3
), pp.
287
297
.
17.
Zhang
,
P.
, and
To
,
A. C.
,
2013
, “
Broadband Wave Filtering of Bioinspired Hierarchical Phononic Crystal
,”
Appl. Phys. Lett.
,
102
(
12
), p.
121910
.
18.
Zhang
,
P.
,
Heyne
,
M. A.
, and
To
,
A. C.
,
2015
, “
Biomimetic Staggered Composites With Highly Enhanced Energy Dissipation: Modeling, 3D Printing, and Testing
,”
J. Mech. Phys. Solids
, 83, pp. 285–300.
19.
Qwamizadeh
,
M.
,
Zhang
,
Z.
,
Zhou
,
K.
, and
Zhang
,
Y. W.
,
2015
, “
On the Relationship Between the Dynamic Behavior and Nanoscale Staggered Structure of the Bone
,”
J. Mech. Phys. Solids
,
78
, pp.
17
31
.
20.
Zhang
,
P.
, and
To
,
A. C.
,
2014
, “
Highly Enhanced Damping Figure of Merit in Biomimetic Hierarchical Staggered Composites
,”
ASME J. Appl. Mech.
,
81
(
5
), p.
051015
.
21.
Lakes
,
R. S.
,
2009
,
Viscoelastic Materials
,
Cambridge University Press
,
New York
.
22.
Sanjeevi
,
R.
,
Somanathan
,
N.
, and
Ramaswamy
,
D.
,
1982
, “
A Viscoelastic Model for Collagen Fibres
,”
J. Biomech.
,
15
(
3
), pp.
181
183
.
23.
Svensson
,
R. B.
,
Hassenkam
,
T.
,
Hansen
,
P.
, and
Magnusson
,
S. P.
,
2010
, “
Viscoelastic Behavior of Discrete Human Collagen Fibrils
,”
J. Mech. Behav. Biomed. Mater.
,
3
(
1
), pp.
112
115
.
24.
Shen
,
Z. L.
,
Kahn
,
H.
,
Ballarini
,
R.
, and
Eppell
,
S. J.
,
2011
, “
Viscoelastic Properties of Isolated Collagen Fibrils
,”
Biophys. J.
,
100
(
12
), pp.
3008
3015
.
25.
Gautieri
,
A.
,
Vesentini
,
S.
,
Redaelli
,
A.
, and
Buehler
,
M. J.
,
2012
, “
Viscoelastic Properties of Model Segments of Collagen Molecules
,”
Matrix Biol.
,
31
(
2
), pp.
141
149
.
26.
Yoon
,
Y. J.
,
Cho
,
K.-H.
, and
Han
,
S.-Y.
,
2014
, “
Viscoelastic Behavior of a Single Collagen Molecule
,”
Int. J. Precis. Eng. Manuf.
,
15
(
4
), pp.
783
786
.
27.
Christensen
,
R.
,
1982
,
Theory of Viscoelasticity: An Introduction
,
Academic Press
,
New York
.
28.
Sasaki
,
N.
,
Nakayama
,
Y.
,
Yoshikawa
,
M.
, and
Enyo
,
A.
,
1993
, “
Stress Relaxation Function of Bone and Bone Collagen
,”
J. Biomech.
,
26
(
12
), pp.
1369
1376
.
29.
Bai
,
Z.
,
Su
,
Y.
, and
Ji
,
B.
,
2016
, “
Buckling Behaviors of Staggered Nanostructure of Biological Materials
,”
ASME J. Appl. Mech.
,
83
(3), p.
031011
.
30.
Su
,
Y.
,
Ji
,
B.
,
Hwang
,
K.-C.
, and
Huang
,
Y.
,
2012
, “
Micro-Buckling in the Nanocomposite Structure of Biological Materials
,”
J. Mech. Phys. Solids
,
60
(
10
), pp.
1771
1790
.
31.
Kamat
,
S.
,
Su
,
X.
,
Ballarini
,
R.
, and
Heuer
,
A.
,
2000
, “
Structural Basis for the Fracture Toughness of the Shell of the Conch Strombus Gigas
,”
Nature
,
405
, pp.
1036
1040
.
32.
Wang
,
R.
,
Suo
,
Z.
,
Evans
,
A.
,
Yao
,
N.
, and
Aksay
,
I.
,
2001
, “
Deformation Mechanisms in Nacre
,”
J. Mater. Res.
,
16
(09), pp.
2485
2493
.
33.
Johansen
,
E.
, and
Parks
,
H. F.
,
1960
, “
Electron Microscopic Observations on the Three-Dimensional Morphology of Apatite Crystallites of Human Dentine and Bone
,”
J. Biophys. Biochem. Cytol.
,
7
(
4
), pp.
743
746
.
34.
Molnar
,
Z.
,
1960
, “
Additional Observations on Bone Crystal Dimensions
,”
Clin. Orthop.
,
17
, pp.
38
42
.
35.
Landis
,
W.
,
Song
,
M.
,
Leith
,
A.
,
McEwen
,
L.
, and
McEwen
,
B.
,
1993
, “
Mineral and Organic Matrix Interaction in Normally Calcifying Tendon Visualized in Three Dimensions by High-Voltage Electron Microscopic Tomography and Graphic Image Reconstruction
,”
J. Struct. Biol.
,
110
(
1
), pp.
39
54
.
36.
Hassenkam
,
T.
,
Fantner
,
G. E.
,
Cutroni
,
J. A.
,
Weaver
,
J. C.
,
Morse
,
D. E.
, and
Hansma
,
P. K.
,
2004
, “
High-Resolution AFM Imaging of Intact and Fractured Trabecular Bone
,”
Bone
,
35
(
1
), pp.
4
10
.
37.
Ziv
,
V.
, and
Weiner
,
S.
,
1994
, “
Bone Crystal Sizes: A Comparison of Transmission Electron Microscopic and X-Ray Diffraction Line Width Broadening Techniques
,”
Connect. Tissue Res.
,
30
(
3
), pp.
165
175
.
38.
Moradian-Oldak
,
J.
,
Weiner
,
S.
,
Addadi
,
L.
,
Landis
,
W.
, and
Traub
,
W.
,
1991
, “
Electron Imaging and Diffraction Study of Individual Crystals of Bone, Mineralized Tendon and Synthetic Carbonate Apatite
,”
Connect. Tissue Res.
,
25
(
3–4
), pp.
219
228
.
You do not currently have access to this content.