Using the location-dependent growth strain, a chemomechanical model is developed for the analysis of the stress evolution and distribution in the viscoplastic oxide scale during high-temperature oxidation. The problem of oxidizing a semi-infinite substrate is formulated and solved. The numerical results reveal high compressive stress and significant stress gradient. The maximum stress is at the oxide/substrate interface and the minimum stress at the oxygen/oxide interface in short oxidation time, while the maximum stress is no longer at the oxide/substrate interface in long oxidation time. The stress evolutions at different locations are also presented. The predicted results agree well with the experimental data.

References

References
1.
Evans
,
U.
,
1947
, “
The Mechanism of Oxidation and Tarnishing
,”
Trans. Electrochem. Soc.
,
91
(
1
), pp.
547
572
.
2.
Stringer
,
J.
,
1970
, “
Stress Generation and Relief in Growing Oxide Films
,”
Corros. Sci.
,
10
(
7
), pp.
513
543
.
3.
Tolpygo
,
V.
, and
Clarke
,
D.
,
1998
, “
Competition Between Stress Generation and Relaxation During Oxidation of an Fe-Cr-Al-Y Alloy
,”
Oxid. Met.
,
49
(
1–2
), pp.
187
212
.
4.
Schütze
,
M.
,
1997
,
Protective Oxide Scales and Their Breakdown
,
Wiley
, Chichester, UK.
5.
Ueno
,
T.
,
1974
, “
Stresses in Bi-Layered NiO Scales
,”
Trans. Jpn. Inst. Met.
,
15
(
3
), pp.
167
172
.
6.
Mitchell
,
T.
,
Voss
,
D.
, and
Butler
,
E.
,
1982
, “
The Observation of Stress Effects During the High Temperature Oxidation of Iron
,”
J. Mater. Sci.
,
17
(
6
), pp.
1825
1833
.
7.
Bedworth
,
R.
, and
Pilling
,
N.
,
1923
, “
The Oxidation of Metals at High Temperatures
,”
J. Inst. Met.
,
29
(
3
), pp.
529
582
.
8.
Rhines
,
F.
, and
Wolf
,
J.
,
1970
, “
The Role of Oxide Microstructure and Growth Stresses in the High-Temperature Scaling of Nickel
,”
Metall. Trans.
,
1
(
6
), pp.
1701
1710
.
9.
Tolpygo
,
V.
,
Dryden
,
J.
, and
Clarke
,
D.
,
1998
, “
Determination of the Growth Stress and Strain in [Alpha]-Al2O3 Scales During the Oxidation of Fe-22Cr-4.8Al-0.3Y Alloy
,”
Acta Mater.
,
46
(
3
), pp.
927
937
.
10.
Clarke
,
D. R.
,
2003
, “
The Lateral Growth Strain Accompanying the Formation of a Thermally Grown Oxide
,”
Acta Mater.
,
51
(
5
), pp.
1393
1407
.
11.
Maharjan
,
S.
,
Zhang
,
X.
, and
Wang
,
Z.
,
2012
, “
Analytical Modeling of Stress and Strain of Symmetrically Oxidized Metal
,”
J. Appl. Phys.
,
112
(
3
), p.
033514
.
12.
Zhang
,
Y.
,
Zhang
,
X.
,
Tu
,
S.-T.
, and
Xuan
,
F.
,
2014
, “
Analytical Modeling on Stress Assisted Oxidation and Its Effect on Creep Response of Metals
,”
Oxid. Met.
,
82
(
3–4
), pp.
311
330
.
13.
Maharjan
,
S.
,
Zhang
,
X.
,
Xuan
,
F.
,
Wang
,
Z.
, and
Tu
,
S.
,
2011
, “
Residual Stresses Within Oxide Layers Due to Lateral Growth Strain and Creep Strain: Analytical Modeling
,”
J. Appl. Phys.
,
110
(
6
), p.
063511
.
14.
Dong
,
X.
,
Feng
,
X.
, and
Hwang
,
K.-C.
,
2012
, “
Oxidation Stress Evolution and Relaxation of Oxide Film/Metal Substrate System
,”
J. Appl. Phys.
,
112
(
2
), p.
023502
.
15.
Grosseau-Poussard
,
J.-L.
,
Panicaud
,
B.
, and
Afia
,
S. B.
,
2013
, “
Modelling of Stresses Evolution in Growing Thermal Oxides on Metals. A Methodology to Identify the Corresponding Mechanical Parameters
,”
Comput. Mater. Sci.
,
71
, pp.
47
55
.
16.
Panicaud
,
B.
,
Grosseau-Poussard
,
J.
, and
Dinhut
,
J.
,
2006
, “
On the Growth Strain Origin and Stress Evolution Prediction During Oxidation of Metals
,”
Appl. Surf. Sci.
,
252
(
16
), pp.
5700
5713
.
17.
Maharjan
,
S.
,
Zhang
,
X.
, and
Wang
,
Z.
,
2012
, “
Effect of Oxide Growth Strain in Residual Stresses for the Deflection Test of Single Surface Oxidation of Alloys
,”
Oxid. Met.
,
77
(
1–2
), pp.
93
106
.
18.
Dong
,
X.
,
Fang
,
X.
,
Feng
,
X.
, and
Hwang
,
K. C.
,
2013
, “
Diffusion and Stress Coupling Effect During Oxidation at High Temperature
,”
J. Am. Ceram. Soc.
,
96
(
1
), pp.
44
46
.
19.
Panicaud
,
B.
,
Grosseau-Poussard
,
J.
, and
Dinhut
,
J.
,
2008
, “
General Approach on the Growth Strain Versus Viscoplastic Relaxation During Oxidation of Metals
,”
Comput. Mater. Sci.
,
42
(
2
), pp.
286
294
.
20.
Krishnamurthy
,
R.
, and
Srolovitz
,
D. J.
,
2003
, “
Stress Distributions in Growing Oxide Films
,”
Acta Mater.
,
51
(
8
), pp.
2171
2190
.
21.
Krishnamurthy
,
R.
, and
Srolovitz
,
D. J.
,
2004
, “
Stress Distributions in Growing Polycrystalline Oxide Films
,”
Acta Mater.
,
52
(
13
), pp.
3761
3780
.
22.
Zhou
,
H.
,
Qu
,
J.
, and
Cherkaoui
,
M.
,
2010
, “
Stress–Oxidation Interaction in Selective Oxidation of Cr–Fe Alloys
,”
Mech. Mater.
,
42
(
1
), pp.
63
71
.
23.
Malavé
,
V.
,
Berger
,
J.
, and
Martin
,
P.
,
2014
, “
Concentration-Dependent Chemical Expansion in Lithium-Ion Battery Cathode Particles
,”
ASME J. Appl. Mech.
,
81
(
9
), p.
091005
.
24.
Guo
,
Z.
,
Zhang
,
T.
,
Hu
,
H.
,
Song
,
Y.
, and
Zhang
,
J.
,
2014
, “
Effects of Hydrostatic Stress and Concentration-Dependent Elastic Modulus on Diffusion-Induced Stresses in Cylindrical Li-Ion Batteries
,”
ASME J. Appl. Mech.
,
81
(
3
), p.
031013
.
25.
Suo
,
Y.
, and
Shen
,
S.
,
2013
, “
General Approach on Chemistry and Stress Coupling Effects During Oxidation
,”
J. Appl. Phys.
,
114
(
16
), p.
164905
.
26.
Hu
,
S.
, and
Shen
,
S.
,
2013
, “
Non-Equilibrium Thermodynamics and Variational Principles for Fully Coupled Thermal–Mechanical–Chemical Processes
,”
Acta Mech.
,
224
(
12
), pp.
2895
2910
.
27.
Wang
,
H.
,
Suo
,
Y.
, and
Shen
,
S.
,
2015
, “
Reaction–Diffusion–Stress Coupling Effect in Inelastic Oxide Scale During Oxidation
,”
Oxid. Met.
,
83
(
5–6
), pp.
507
519
.
28.
Yu
,
P.
, and
Shen
,
S.
,
2014
, “
A Fully Coupled Theory and Variational Principle for Thermal–Electrical–Chemical–Mechanical Processes
,”
ASME J. Appl. Mech.
,
81
(
11
), p.
111005
.
29.
Zhu
,
D.
,
Stout
,
J. H.
, and
Shores
,
D. A.
, 1997, “
Determination of Stress Gradients in a Thermally Grown Oxide Layer Using X-Ray Diffraction
,”
Mat. Sci. Forum
,
251–254
(
1
).
30.
Bradhurst
,
D. H.
, and
Heuer
,
P. M.
,
1970
, “
The Influence of Oxide Stress on the Breakaway Oxidation of Zircaloy-2
,”
J. Nucl. Mater.
,
37
(
1
), pp.
35
47
.
31.
Kobeda
,
E.
, and
Irene
,
E.
,
1988
, “
SiO2 Film Stress Distribution During Thermal Oxidation of Si
,”
J. Vac. Sci. Technol. B
,
6
(
2
), pp.
574
578
.
32.
Atkinson
,
A.
,
1985
, “
Transport Processes During the Growth of Oxide-Films at Elevated-Temperature
,”
Rev. Mod. Phys.
,
57
(
2
), pp.
437
470
.
33.
Cox
,
B.
,
2005
, “
Some Thoughts on the Mechanisms of In-Reactor Corrosion of Zirconium Alloys
,”
J. Nucl. Mater.
,
336
(
2
), pp.
331
368
.
34.
Li
,
J.
,
1981
, “
Chemical Potential for Diffusion in a Stressed Solid
,”
Scr. Metall.
,
15
(
1
), pp.
21
28
.
35.
Swaminathan
,
N.
,
Qu
,
J.
, and
Sun
,
Y.
,
2007
, “
An Electrochemomechanical Theory of Defects in Ionic Solids. I. Theory
,”
Philos. Mag.
,
87
(
11
), pp.
1705
1721
.
36.
Rambert
,
G.
,
Grandidier
,
J.-C.
, and
Aifantis
,
E. C.
,
2007
, “
On the Direct Interactions Between Heat Transfer, Mass Transport and Chemical Processes Within Gradient Elasticity
,”
Eur. J. Mech. A-Solids
,
26
(
1
), pp.
68
87
.
37.
Demirel
,
Y.
,
2008
, “
Modeling of Thermodynamically Coupled Reaction-Transport Systems
,”
Chem. Eng. J.
,
139
(
1
), pp.
106
117
.
38.
Larche
,
F.
, and
Cahn
,
J.
,
1984
, “
The Interactions of Composition and Stress in Crystalline Solids
,”
J. Res. Natl. Bur. Stand.
,
89
(
6
), pp.
467
500
.
39.
García
,
E. A.
, and
Kovacs
,
J.
,
1994
, “
Diffusion Model for the Oxidation of Zirconium at 573 and 623 K
,”
J. Nucl. Mater.
,
210
(
1
), pp.
78
83
.
40.
Favergeon
,
J.
,
Montesin
,
T.
, and
Bertrand
,
G.
,
2005
, “
Mechano-Chemical Aspects of High Temperature Oxidation: A Mesoscopic Model Applied to Zirconium Alloys
,”
Oxid. Met.
,
64
(
3–4
), pp.
253
279
.
41.
Panicaud
,
B.
,
Grosseau-Poussard
,
J.-L.
,
Retraint
,
D.
,
Guérain
,
M.
, and
Li
,
L.
,
2013
, “
On the Mechanical Effects of a Nanocrystallisation Treatment for ZrO2 Oxide Films Growing on a Zirconium Alloy
,”
Corros. Sci.
,
68
, pp.
263
274
.
42.
Wagner
,
C.
,
1933
, “
Contribution to the Theory of Formation of Oxidation Films
,”
Z. Phys. Chem. B
,
21
, p.
25
.
You do not currently have access to this content.