This paper presents a new crack band model (CBM) for probabilistic analysis of quasibrittle fracture. The model is anchored by a probabilistic treatment of damage initiation, localization, and propagation. This model regularizes the energy dissipation of a single material element for the transition between damage initiation and localization. Meanwhile, the model also takes into account the probabilistic onset of damage localization inside the finite element (FE) for the case where the element size is larger than the crack band width. The random location of the localization band is related to the random material strength, whose statistics is described by a finite weakest link model. The present model is applied to simulate the probability distributions of the nominal strength of different quasibrittle structures. It is shown that for quasibrittle structures direct application of the conventional CBM for stochastic FE simulations would lead to mesh-sensitive results. To mitigate such mesh dependence, it is essential to incorporate the strain localization mechanism into the formulation of the sampling distribution functions of material constitutive parameters.

References

References
1.
Hill
,
R.
,
1958
, “
A General Theory of Uniqueness and Stability in Elastic-Plastic Solids
,”
J. Mech. Phys. Solids
,
6
(
3
), pp.
236
249
.
2.
Rudnicki
,
J. W.
, and
Rice
,
J. R.
,
1976
, “
A Conditions for the Localization of Deformation in Pressure-Sensitive Dilatant Materials
,”
J. Mech. Phys. Solids
,
23
(6), pp.
371
394
.
3.
Ottosen
,
N.
, and
Runesson
,
K.
,
1991
, “
Properties of Discontinuous Bifurcation Solutions in Elasto-Plasticity
,”
Int. J. Solids Struct.
,
27
(
4
), pp.
401
421
.
4.
Rizzi
,
E.
,
Carol
,
I.
, and
Willam
,
K.
,
1996
, “
Localization Analysis of Elastic Degradation With Application to Scalar Damage
,”
J. Eng. Mech.
,
121
(4), pp.
541
554
.
5.
Jirásek
,
M.
,
2007
, “
Mathematical Analysis of Strain Localization
,”
Rev. Eur. Génie Civ.
,
11
, pp.
977
991
.
6.
Bažant
,
Z. P.
, and
Oh
,
B.-H.
,
1983
, “
Crack Band Theory for Fracture of Concrete
,”
Mater. Struct.
,
16
(3), pp.
155
177
.
7.
Bažant
,
Z. P.
,
1985
, “
Mechanics of Fracture and Progressive Cracking in Concrete Structures
,”
Fracture Mechanics of Concrete: Structural Application and Numerical Calculation
,
G. C.
Sih
, and
A.
DiTommaso
, eds.,
Martinus Nijhoff
,
Dordrecht, Boston
, pp.
1
94
.
8.
Jirásek
,
M.
, and
Bažant
,
Z. P.
,
2002
,
Inelastic Analysis of Structures
,
Wiley
,
Chichester
.
9.
Jirásek
,
M.
, and
Bauer
,
M.
,
2012
, “
Numerical Aspects of the Crack Band Approach
,”
Comput. Struct.
,
110–111
, pp.
60
78
.
10.
Pijaudier-Cabot
,
G.
, and
Bažant
,
Z. P.
,
1987
, “
Nonlocal Damage Theory
,”
J. Eng. Mech.
,
113
(
10
), pp.
1512
1533
.
11.
Bažant
,
Z. P.
, and
Pijaudier-Cabot
,
G.
,
1988
, “
Nonlocal Continuum Damage, Localization Instability and Convergence
,”
ASME J. Appl. Mech.
,
55
(
2
), pp.
287
293
.
12.
Aifantis
,
E. C.
,
1984
, “
On the Microstructural Origin of Certain Inelastic Models
,”
ASME J. Eng. Mater. Technol.
,
106
(
4
), pp.
326
330
.
13.
Bažant
,
Z. P.
,
1984
, “
Imbricate Continuum and Progressive Fracturing of Concrete and Geomaterials
,”
Meccanica
,
19
, pp.
86
93
.
14.
Peerings
,
R. H. J.
,
de Borst
,
R.
,
Brekelmans
,
W. A. M.
, and
de Vree
,
J. H. P.
,
1996
, “
Gradient-Enhanced Damage for Quasi-Brittle Materials
,”
Int. J. Numer. Methods Eng.
,
39
(
19
), pp.
3391
3403
.
15.
Peerings
,
R. H. J.
,
Geers
,
M. G. D.
,
de Borst
,
R.
, and
Brekelmans
,
W. A. M.
,
2001
, “
A Critical Comparison of Nonlocal and Gradient-Enhanced Softening Continua
,”
Int. J. Solids Struct.
,
38
, pp.
7723
7746
.
16.
Bažant
,
Z. P.
,
Le
,
J.-L.
, and
Bazant
,
M. Z.
,
2009
, “
Scaling of Strength and Lifetime Distributions of Quasibrittle Structures Based on Atomistic Fracture Mechanics
,”
Proc. Natl. Acad. Sci. U. S. A.
,
106
(
28
), pp.
11484
11489
.
17.
Le
,
J.-L.
,
Bažant
,
Z. P.
, and
Bazant
,
M. Z.
,
2011
, “
Unified Nano-Mechanics Based Probabilistic Theory of Quasibrittle and Brittle Structures: I. Strength, Crack Growth, Lifetime and Scaling
,”
J. Mech. Phys. Solids
,
59
(
7
), pp.
1291
1321
.
18.
Shinozuka
,
M.
, and
Deodatis
,
G.
,
1991
, “
Simulation of Stochastic Processes by Spectral Representation
,”
ASME Appl. Mech. Rev.
,
44
(
4
), pp.
191
203
.
19.
Ghanem
,
R.
, and
Spanos
,
P. D.
,
2003
,
Stochastic Finite Elements: A Spectral Approach
,
2nd ed.
,
Dover Publications
,
New York
.
20.
Stefanou
,
G.
,
2009
, “
The Stochastic Finite Element Method: Past, Present and Future
,”
Comput. Methods Appl. Mech. Eng.
,
198
, pp.
1031
1051
.
21.
Daphalapurkar
,
N. P.
,
Ramesh
,
K. T.
,
Graham-Brady
,
L. L.
, and
Molinari
,
J. F.
,
2011
, “
Predicting Variability in the Dynamic Failure Strength of Brittle Materials Considering Preexisting Flaws
,”
J. Mech. Phys. Solids
,
59
(
2
), pp.
297
319
.
22.
Strack
,
O. E.
,
Leavy
,
R.
, and
Brannon
,
R.
,
2014
, “
Aleatory Uncertainty and Scale Effects in Computational Damage Models for Failure and Fragmentation
,”
Int. J. Numer. Methods Eng.
,
102
(
3–4
), pp.
468
495
.
23.
Grassl
,
P.
, and
Bažant
,
Z. P.
,
2009
, “
Random Lattice-Particle Simulation of Statistical Size Effect in Quasibrittle Structures Failing at Crack Initiation
,”
J. Eng. Mech.
,
135
(
2
), pp.
85
92
.
24.
Eliáš
,
J.
,
Vořechovský
,
J.
,
Skoček
,
J.
, and
Bažant
,
Z. P.
,
2015
, “
Stochastic Discrete Meso-Scale Simulations of Concrete Fracture: Comparison to Experimental Data
,”
Eng. Fract. Mech.
,
135
, pp.
1
16
.
25.
Bažant
,
Z. P.
, and
Planas
,
J.
,
1998
,
Fracture and Size Effect in Concrete and Other Quasibrittle Materials
,
CRC Press
,
Boca Raton, London
.
26.
Bažant
,
Z. P.
,
2005
,
Scaling of Structural Strength
,
Elsevier
,
London
.
27.
Bažant
,
Z. P.
, and
Pang
,
S. D.
,
2007
, “
Activation Energy Based Extreme Value Statistics and Size Effect in Brittle and Quasibrittle Fracture
,”
J. Mech. Phys. Solids
,
55
(
1
), pp.
91
134
.
28.
Le
,
J.-L.
, and
Xue
,
B.
,
2013
, “
Energetic-Statistical Size Effect in Fracture of Bimaterial Hybrid Structures
,”
Eng. Fract. Mech.
,
111
, pp.
106
115
.
29.
Mazars
,
J.
,
1984
, “
Application de la mécanique de l'endommagement au comportement non linéaire et à la rupture du béton de structure
,” Ph.D. thesis, University of Paris VI, Paris, France.
30.
Patzák
,
B.
,
2012
, “
OOFEM—An Object-Oriented Simulation Tool for Advanced Modeling of Materials and Structures
,”
Acta Polytech.
,
52
, pp.
59
66
.
31.
Patzák
,
B.
, and
Rypl
,
D.
,
2012
, “
Object-Oriented, Parallel Finite Element Framework With Dynamic Load Balancing
,”
Adv. Eng. Software
,
47
(
1
), pp.
35
50
.
You do not currently have access to this content.