Kaleidocycles are continuously rotating n-jointed linkages. We consider a certain class of six-jointed kaleidocycles which have a spring at each joint. For this class of kaleidocycles, stored energy varies throughout the rotation process in a nonconstant, cyclic pattern. The purpose of this paper is to model and provide an analysis of the stored energy of a kaleidocycle throughout its motion. In particular, we will solve analytically for the number of stable equilibrium states for any kaleidocycle in this class.
Issue Section:
Research Papers
References
1.
Evans
, T. A.
, Rowberry
, B. G.
, Magleby
, S. P.
, and Howell
, L. L.
, 2015
, “Multistable Behavior of Compliant Kaleidocycles
,” ASME
Paper No. DETC2015-46637.2.
Schattschneider
, D.
, 1977
, M. C. Escher Kaleidocycles
, Ballantine Books
, New York
.3.
Dai
, J. S.
, and Jones
, J. R.
, 2002
, “Kinematics and Mobility Analysis of Carton Folds in Packing Manipulation Based on the Mechanism Equivalent
,” Proc. Inst. Mech. Eng. C
, 216
(10
), pp. 959
–970
.4.
Howell
, L. L.
, and Midha
, A.
, 1994
, “A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,” ASME J. Mech. Des.
, 116
(1
), pp. 280
–290
.5.
Baker
, J. E.
, 1980
, “An Analysis of the Bricard Linkages
,” Mech. Mach. Theory
, 15
(4
), pp. 267
–286
.6.
Bricard
, R.
, 1897
, “Memoire sur la thorie de l'octadre articul
,” J. Math. Pures Appl.
, 3
, pp. 113
–150
.7.
You
, Z.
, and Chen
, Y.
, 2001
, Motion Structures
, Taylor and Francis
, London
.8.
Chen
, Y.
, You
, Z.
, and Tarnai
, T.
, 2005
, “Threefold-Symmetric Bricard Linkages for Deployable Structures
,” Int. J. Solids Struct.
, 42
(8
), pp. 2287
–2301
.9.
Song
, C. Y.
, Chen
, Y.
, and Chen
, I. M.
, 2014
, “Kinematic Study of the Original and Revised General Line-Symmetric Bricard 6R Linkages
,” ASME J. Mech. Rob.
, 6
(3
), p. 031002
.10.
Wei
, G.
, and Dai
, J. S.
, 2014
, “Origami-Inspired Integrated Planar-Spherical Overconstrained Mechanisms
,” ASME J. Mech. Des.
, 136
(5
), p. 051003
.11.
Chen
, Y.
, Peng
, R.
, and You
, Z.
, 2015
, “Origami of Thick Panels
,” Science
, 349
(6246
), pp. 396
–400
.12.
Howell
, L. L.
, 2001
, Compliant Mechanisms
, Wiley
, New York
.13.
Howell
, L. L.
, Magleby
, S. P.
, and Olsen
, B. O.
, eds., 2013
, Handbook of Compliant Mechanisms
, Wiley
, New York
.14.
Vogtmann
, D. E.
, Gupta
, S. K.
, and Bergbreiter
, S.
, 2013
, “Characterization and Modeling of Elastomeric Joints in Miniature Compliant Mechanisms
,” ASME J. Mech. Rob.
, 5
(4
), p. 041017
.15.
Venkiteswaran
, V. K.
, and Su
, H. J.
, 2015
, “A Parameter Optimization Framework for Determining the Pseudo-Rigid-Body Model of Cantilever-Beams
,” Precis. Eng.
, 40
, pp. 46
–54
.16.
Dado
, M. H.
, 2001
, “Variable Parametric Pseudo-Rigid-Body Model for Large-Deflection Beams With End Loads
,” Int. J. Nonlinear Mech.
, 36
(7
), pp. 1123
–1133
.17.
Yu
, Y. Q.
, Feng
, Z. L.
, and Xu
, Q. P.
, 2012
, “A Pseudo-Rigid-Body 2R Model of Flexural Beam in Compliant Mechanisms
,” Mech. Mach. Theory
, 55
, pp. 18
–33
.18.
Dai
, J. S.
, and Cannella
, F.
, 2008
, “Stiffness Characteristics of Carton Folds for Packaging
,” ASME J. Mech. Des.
, 130
(2
), p. 022305
.19.
Wang
, D. A.
, Chen
, J. H.
, and Pham
, H. T.
, 2014
, “A Tristable Compliant Micromechanism With Two Serially Connected Bistable Mechanisms
,” Mech. Mach. Theory
, 71
, pp. 27
–39
.20.
Chen
, G.
, Gou
, Y.
, and Zhang
, A.
, 2011
, “Synthesis of Compliant Multistable Mechanisms Through Use of a Single Bistable Mechanism
,” ASME J. Mech. Des.
, 133
(8
), p. 081007
.21.
Williams
, M. D.
, van Keulen
, F.
, and Sheplak
, M.
, 2012
, “Modeling of Initially Curved Beam Structures for Design of Multistable MEMS
,” ASME J. Appl. Mech.
, 79
(1
), p. 011006
.22.
Dellaert
, D.
, and Doutreloigne
, J.
, 2014
, “Design and Characterization of a Thermally Actuated Latching MEMS Switch for Telecommunication Applications
,” J. Micromech. Microeng.
, 24
(7
), p. 075022
.23.
Beharic
, J.
, Lucas
, T. M.
, and Harnett
, C. K.
, 2014
, “Analysis of a Compressed Bistable Buckled Beam on a Flexible Support
,” ASME J. Appl. Mech.
, 81
(8
), p. 081011
.24.
Gomm
, T.
, Howell
, L. L.
, and Selfridge
, R. H.
, 2002
, “In-Plane Linear-Displacement Bistable Microrelay
,” J. Micromech. Microeng.
, 12
(3
), pp. 257
–264
.25.
Pucheta
, M. A.
, and Cardona
, A.
, 2010
, “Design of Bistable Compliant Mechanisms Using Precision-Position and Rigid-Body Replacement Methods
,” Mech. Mach. Theory
, 45
(2
), pp. 304
–326
.26.
Tanner
, J. D.
, and Jensen
, B. D.
, 2013
, “Power-Free Bistable Threshold Accelerometer Made From a Carbon Nanotube Framework
,” J. Mech. Sci.
, 4
(2
), pp. 397
–405
.27.
Silverberg
, J.
, Na
, J.
, Evans
, A.
, Liu
, B.
, Hull
, T.
, Santangelo
, C.
, Lang
, R.
, Hayward
, R.
, and Cohen
, I.
, 2015
, “Origami Structures With a Critical Transition to Bistability Arising From Hidden Degrees of Freedom
,” Nat. Mater.
, 14
(4
), pp. 389
–393
.28.
Hanna
, B. H.
, Magleby
, S. P.
, Lang
, R. J.
, and Howell
, L. L.
, 2015
, “Force-Deflection Modeling for Generalized Origami Waterbomb-Base Mechanisms
,” ASME J. Appl. Mech.
, 82
(8
), p. 081001
.29.
Waitukaitis
, S.
, Menaut
, R.
, Chen
, B. G.
, and van Hecke
, M.
, 2015
, “Origami Multistability: From Single Vertices to Metasheets
,” Phys. Rev. Lett.
, 114
(5
), p. 055503
.30.
Yasuda
, H.
, and Yang
, J.
, 2015
, “Reentrant Origami-Based Metamaterials With Negative Poisson's Ratio and Bistability
,” Phys. Rev. Lett.
, 114
(18
), p. 185502
.31.
Lang
, R. J.
, 2011
, Origami Design Secrets: Mathematical Methods for an Ancient Art
, CRC Press
, Boca Raton, FL
.32.
Greenberg
, H. C.
, Gong
, M. L.
, Howell
, L. L.
, and Magleby
, S. P.
, 2011
, “Identifying Links Between Origami and Compliant Mechanisms
,” Mech. Sci.
, 2
(2
), pp. 217
–225
.33.
Winder
, B. G.
, Magleby
, S. P.
, and Howell
, L. L.
, 2009
, “Kinematic Representations of Pop-Up Paper Mechanisms
,” ASME J. Mech. Rob.
, 1
(2
), pp. 217
–225
.34.
Silverberg
, J. L.
, Evans
, A. A.
, McLeod
, L.
, Hayward
, R. C.
, Hull
, T.
, Santangelo
, C. D.
, and Cohen
, I.
, 2014
, “Using Origami Design Principles to Fold Reprogrammable Mechanical Metamaterials
,” Science
, 345
(6197
), pp. 647
–650
.35.
Schenk
, M.
, and Guest
, S. D.
, 2012
, “Geometry of Miura-Folded Metamaterials
,” Proc. Natl. Acad. Sci. U.S.A.
, 110
(9
), pp. 3276
–3281
.36.
Miura
, K.
, 1985
, “Method of Packaging and Deployment of Large Membranes in Space
,” The Institute of Space and Astronautical Science, Tokyo, Tech. Report 618.37.
Zirbel
, S. A.
, Lang
, R. J.
, Magleby
, S. P.
, Thomson
, M. W.
, Sigel
, D. A.
, Walkemeyer
, P. E.
, Trease
, B. P.
, and Howell
, L. L.
, 2013
, “Accommodating Thickness in Origami-Based Deployable Arrays
,” ASME J. Mech. Des.
, 135
(11
), p. 111005
.38.
Ma
, J.
, and You
, Z.
, 2013
, “Energy Absorption of Thin-Walled Square Tubes With a Prefolded Origami Pattern—Part I: Geometry and Numerical Simulation
,” ASME J. Appl. Mech.
, 81
(1
), p. 011003
.39.
Guest
, S. D.
, and Pellegrino
, S.
, 1994
, “The Folding of Triangulated Cylinders—Part I: Geometric Considerations
,” ASME J. Appl. Mech.
, 61
(4
), pp. 773
–777
.40.
Hawkes
, E.
, An
, B.
, Benbernou
, N. M.
, Tanaka
, H.
, Kim
, S.
, Demaine
, E. D.
, Rus
, D.
, and Wood
, R. J.
, 2010
, “Programmable Matter by Folding
,” Proc. Natl. Acad. Sci. U.S.A.
, 107
(28
), pp. 12441
–12445
.41.
Felton
, S.
, Tolley
, M.
, Demaine
, E.
, Rus
, D.
, and Wood
, R.
, 2014
, “A Method for Self-Folding Machines
,” Science
, 345
(6197
), pp. 644
–646
.42.
Quaglia
, C. P.
, Dascanio
, A. J.
, and Thrall
, A. P.
, 2014
, “Bascule Shelters: A Novel Erection Strategy for Origami-Inspired Deployable Structures
,” Eng. Struct.
, 75
, pp. 276
–287
.43.
Francis
, K. C.
, Blanch
, J. E.
, Magleby
, S. P.
, and Howell
, L. L.
, 2013
, “Origami-Like Creases in Sheet Materials for Compliant Mechanism Design
,” Mech. Sci.
, 4
(2
), pp. 371
–380
.44.
Delimont
, I. L.
, Magleby
, S. P.
, and Howell
, L. L.
, 2015
, “A Family of Dual-Segment Compliant Joints Suitable for Use as Surrogate Folds
,” ASME J. Mech. Des.
, 137
(9
), p. 092302
.45.
Evans
, T.
, 2015
, “Deployable and Foldable Arrays of Spatial Mechanisms
,” M.S. thesis, Brigham Young University, Provo, UT.46.
Rowberry
, B. G.
, 2013
, “Stability of n = 6 Normal and Right-Angled Kaleidocycles Under the Influence of Energy Elements
,” B.S. honors thesis, Brigham Young University, Provo, UT.Copyright © 2016 by ASME
You do not currently have access to this content.