In this work, the compressive buckling of a nanowire partially bonded to an elastomeric substrate is studied via finite-element method (FEM) simulations and experiments. The buckling profile of the nanowire can be divided into three regimes, i.e., the in-plane buckling, the disordered buckling in the out-of-plane direction, and the helical buckling, depending on the constraint density between the nanowire and the substrate. The selection of the buckling mode depends on the ratio d/h, where d is the distance between adjacent constraint points and h is the helical buckling spacing of a perfectly bonded nanowire. For d/h > 0.5, buckling is in-plane with wavelength λ = 2d. For 0.27 < d/h < 0.5, buckling is disordered with irregular out-of-plane displacement. While, for d/h < 0.27, buckling is helical and the buckling spacing gradually approaches to the theoretical value of a perfectly bonded nanowire. Generally, the in-plane buckling induces smaller strain in the nanowire, but consumes the largest space. Whereas the helical mode induces moderate strain in the nanowire, but takes the smallest space. The study may shed useful insights on the design and optimization of high-performance stretchable electronics and three-dimensional complex nanostructures.

References

References
1.
Zhang
,
Y.
,
Yan
,
Z.
,
Nan
,
K.
,
Xiao
,
D.
,
Liu
,
Y.
,
Luan
,
H.
,
Fu
,
H.
,
Wang
,
X.
,
Yang
,
Q.
,
Wang
,
J.
,
Ren
,
W.
,
Si
,
H.
,
Liu
,
F.
,
Yang
,
L.
,
Li
,
H.
,
Wang
,
J.
,
Guo
,
X.
,
Luo
,
H.
,
Wang
,
L.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2015
, “
A Mechanically Driven Form of Kirigami as a Route to 3D Mesostructures in Micro/Nanomembranes
,”
Proc. Natl. Acad. Sci. U.S.A.
,
112
(
38
), pp.
11757
11764
.
2.
Xu
,
S.
,
Yan
,
Z.
,
Jang
,
K. I.
,
Huang
,
W.
,
Fu
,
H. R.
,
Kim
,
J.
,
Wei
,
Z.
,
Flavin
,
M.
,
McCracken
,
J.
,
Wang
,
R.
,
Badea
,
A.
,
Liu
,
Y.
,
Xiao
,
D. Q.
,
Zhou
,
G. Y.
,
Lee
,
J.
,
Chung
,
H. U.
,
Cheng
,
H. Y.
,
Ren
,
W.
,
Banks
,
A.
,
Li
,
X. L.
,
Paik
,
U.
,
Nuzzo
,
R. G.
,
Huang
,
Y. G.
,
Zhang
,
Y. H.
, and
Rogers
,
J. A.
,
2015
, “
Assembly of Micro/Nanomaterials Into Complex, Three-Dimensional Architectures by Compressive Buckling
,”
Science
,
347
(
6218
), pp.
154
159
.
3.
Yao
,
S.
, and
Zhu
,
Y.
,
2015
, “
Nanomaterial-Enabled Stretchable Conductors: Strategies, Materials and Devices
,”
Adv. Mater.
,
27
(
9
), pp.
1480
1511
.
4.
Xu
,
F.
,
Lu
,
W.
, and
Zhu
,
Y.
,
2011
, “
Controlled 3D Buckling of Silicon Nanowires for Stretchable Electronics
,”
ACS Nano
,
5
(
1
), pp.
672
678
.
5.
Kim
,
D.-H.
, and
Rogers
,
J. A.
,
2009
, “
Bend, Buckle, and Fold: Mechanical Engineering With Nanomembranes
,”
ACS Nano
,
3
(
3
), pp.
498
501
.
6.
Song
,
J.
,
Jiang
,
H.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2009
, “
Mechanics of Stretchable Inorganic Electronic Materials
,”
J. Vac. Sci. Technol., A
,
27
(
5
), p.
1107
.
7.
Rogers
,
J. A.
,
Someya
,
T.
, and
Huang
,
Y.
,
2010
, “
Materials and Mechanics for Stretchable Electronics
,”
Science
,
327
(
5973
), pp.
1603
1607
.
8.
Song
,
J.
,
Huang
,
Y.
,
Xiao
,
J.
,
Wang
,
S.
,
Hwang
,
K. C.
,
Ko
,
H. C.
,
Kim
,
D. H.
,
Stoykovich
,
M. P.
, and
Rogers
,
J. A.
,
2009
, “
Mechanics of Noncoplanar Mesh Design for Stretchable Electronic Circuits
,”
J. Appl. Phys.
,
105
(
12
), p.
123516
.
9.
Chen
,
X.
, and
Yin
,
J.
,
2010
, “
Buckling Patterns of Thin Films on Curved Compliant Substrates With Applications to Morphogenesis and Three-Dimensional Micro-Fabrication
,”
Soft Matter
,
6
(
22
), pp.
5667
5680
.
10.
Zhong
,
Z.
,
Wang
,
D.
,
Cui
,
Y.
,
Bockrath
,
M. W.
, and
Lieber
,
C. M.
,
2003
, “
Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems
,”
Science
,
302
(
5649
), pp.
1377
1379
.
11.
Holmes
,
J. D.
,
Johnston
,
K. P.
,
Doty
,
R. C.
, and
Korgel
,
B. A.
,
2000
, “
Orientation of Solution-Grown Silicon Nanowires
,”
Science
,
287
(
5457
), p.
1471
.
12.
Wu
,
Y.
,
Xiang
,
J.
,
Yang
,
C.
,
Lu
,
W.
, and
Lieber
,
C. M.
,
2004
, “
Single-Crystal Metallic Nanowires and Metal/Semiconductor Nanowire Heterostructures
,”
Nature
,
430
(
6995
), pp.
61
65
.
13.
Zhu
,
Y.
,
Xu
,
F.
,
Qin
,
Q.
,
Fung
,
W. Y.
, and
Lu
,
W.
,
2009
, “
Mechanical Properties of Vapor-Liquid-Solid Synthesized Silicon Nanowires
,”
Nano Lett.
,
9
(
11
), pp.
3934
3939
.
14.
Hoffmann
,
S.
,
Utke
,
I.
,
Moser
,
B.
,
Michler
,
J.
,
Christiansen
,
S. H.
,
Schmidt
,
V.
,
Senz
,
S.
,
Werner
,
P.
,
Gösele
,
U.
, and
Ballif
,
C.
,
2006
, “
Measurement of the Bending Strength of Vapor-Liquid-Solid Grown Silicon Nanowires
,”
Nano Lett.
,
6
(
4
), pp.
622
625
.
15.
Ryu
,
S. Y.
,
Xiao
,
J.
,
Park
,
W. I.
,
Son
,
K. S.
,
Huang
,
Y. Y.
,
Paik
,
U.
, and
Rogers
,
J. A.
,
2009
, “
Lateral Buckling Mechanics in Silicon Nanowires on Elastomeric Substrates
,”
Nano Lett.
,
9
(
9
), pp.
3214
3219
.
16.
Xiao
,
J.
,
Ryu
,
S. Y.
,
Huang
,
Y.
,
Hwang
,
K. C.
,
Paik
,
U.
, and
Rogers
,
J. A.
,
2010
, “
Mechanics of Nanowire/Nanotube In-Surface Buckling on Elastomeric Substrates
,”
Nanotechnology
,
21
(
8
), p.
85708
.
17.
Durham
,
J. W.
, 3rd
, and
Zhu
,
Y.
,
2013
, “
Fabrication of Functional Nanowire Devices on Unconventional Substrates Using Strain-Release Assembly
,”
ACS Appl. Mater. Interfaces
,
5
(
2
), pp.
256
261
.
18.
Qin
,
Q.
, and
Zhu
,
Y.
,
2011
, “
Static Friction Between Silicon Nanowires and Elastomeric Substrates
,”
ACS Nano
,
5
(
9
), pp.
7404
7410
.
19.
Efimenko
,
K.
,
Wallace
,
W. E.
, and
Genzer
,
J.
,
2002
, “
Surface Modification of Sylgard-184 Poly(Dimethyl Siloxane) Networks by Ultraviolet and Ultraviolet/Ozone Treatment
,”
J. Colloid Interface Sci.
,
254
(
2
), pp.
306
315
.
20.
Chen
,
Y.
,
Liu
,
Y.
,
Yan
,
Y.
,
Zhu
,
Y.
, and
Chen
,
X.
, “
Helical Coil Buckling Mechanism for a Stiff Nanowire on an Elastomeric Substrate
,” (unpublished work).
21.
Xiao
,
J.
,
Jiang
,
H.
,
Khang
,
D. Y.
,
Wu
,
J.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2008
, “
Mechanics of Buckled Carbon Nanotubes on Elastomeric Substrates
,”
J. Appl. Phys.
,
104
(
3
), p.
033543
.
22.
Duan
,
Y.
,
Huang
,
Y.
, and
Yin
,
Z.
,
2015
, “
Competing Buckling of Micro/Nanowires on Compliant Substrates
,”
J. Phys. D: Appl. Phys.
,
48
(
4
), p.
045302
.
23.
Peng
,
X. H.
,
Alizadeh
,
A.
,
Kumar
,
S. K.
, and
Nayak
,
S. K.
,
2009
, “
Ab Initio Study of Size and Strain Effects on the Electronic Properties of Si Nanowires
,”
ASME Int. J. Appl. Mech.
,
1
(
3
), pp.
483
499
.
24.
Sajjad
,
R. N.
, and
Alam
,
K.
,
2009
, “
Electronic Properties of a Strained <100> Silicon Nanowire
,”
J. Appl. Phys.
,
105
(
4
), p.
044307
.
You do not currently have access to this content.