The elevated-temperature indentation has been utilized to measure the elevated-temperature mechanical properties of thermal barrier coatings (TBCs), which have a major influence on their thermomechanical characteristics and failures. In this paper, the pile-up phenomenon of TBCs under elevated-temperature indentation was investigated, and a characterization method for Young's modulus of TBCs was proposed. According to the dimensional analysis and finite-element method, a critical temperature-dependent factor was conducted as the criterion for pile-up behavior. Some experiment results agreed fairly well with the criterion. Then, the pile-up behavior of TBCs at elevated temperature was studied. It was found that the pile-up behavior depended on the temperature-dependent factor and got larger with increasing temperature. Finally, a characterization method was proposed to extract the Young's modulus of TBCs, which was found to be more suitable for elevated-temperature indentation.

References

References
1.
Perepezko
,
J. H.
,
2009
, “
The Hotter the Engine, the Better
,”
Science
,
326
(
5956
), pp.
1068
1069
.
2.
Sundaram
,
S.
,
Lipkin
,
D. M.
,
Johnson
,
C. A.
, and
Hutchinson
,
J. W.
,
2013
, “
The Influence of Transient Thermal Gradients and Substrate Constraint on Delamination of Thermal Barrier Coatings
,”
ASME J. Appl. Mech.
,
80
(
1
), p.
011002
.
3.
Darolia
,
R.
,
2013
, “
Thermal Barrier Coatings Technology: Critical Review, Progress Update, Remaining Challenges and Prospects
,”
Int. Mater. Rev.
,
58
(
6
), pp.
315
348
.
4.
Limarga
,
A. M.
,
Vaßen
,
R.
, and
Clarke
,
D. R.
,
2011
, “
Stress Distributions in Plasma-Sprayed Thermal Barrier Coatings Under Thermal Cycling in a Temperature Gradient
,”
ASME J. Appl. Mech.
,
78
(
1
), p.
011003
.
5.
Rangaraj
,
S.
, and
Kokini
,
K.
,
2003
, “
Multiple Surface Cracking and Its Effect on Interface Cracks in Functionally Graded Thermal Barrier Coatings Under Thermal Shock
,”
ASME J. Appl. Mech.
,
70
(
2
), pp.
234
245
.
6.
Su
,
H.
,
Fang
,
X.
,
Feng
,
X.
, and
Yan
,
B.
,
2014
, “
Temperature-Dependent Modulus of Metals Based on Lattice Vibration Theory
,”
ASME J. Appl. Mech.
,
81
(
4
), p.
041017
.
7.
Chan
,
S. K.
,
Fang
,
Y.
,
Grimsditch
,
M.
,
Li
,
Z.
,
Nevitt
,
M. V.
,
Robertson
,
W. M.
, and
Zouboulis
,
E. S.
,
1991
, “
Temperature Dependence of the Elastic Moduli of Monoclinic Zirconia
,”
J. Am. Ceram. Soc.
,
74
(
7
), pp.
1742
1744
.
8.
Shang
,
F. L.
,
Zhang
,
X.
,
Guo
,
X. C.
,
Zhao
,
P. F.
, and
Chang
,
Y.
,
2014
, “
Determination of High Temperature Mechanical Properties of Thermal Barrier Coatings by Indentation
,”
Surf. Eng.
,
30
(
4
), pp.
283
289
.
9.
Kim
,
C. H.
, and
Heuer
,
A. H.
,
2004
, “
A High-Temperature Displacement-Sensitive Indenter for Studying Mechanical Properties of Thermal Barrier Coatings
,”
J. Mater. Res.
,
19
(
1
), pp.
351
356
.
10.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
2004
, “
Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology
,”
J. Mater. Res.
,
19
(
1
), pp.
3
20
.
11.
Takagi
,
H.
,
Fujiwara
,
M.
, and
Kakehi
,
K.
,
2004
, “
Measuring Young's modulus of Ni-Based Superalloy Single Crystals at Elevated Temperatures Through Microindentation
,”
Mat. Sci. Eng. A
,
387
, pp.
348
351
.
12.
Villemiane1
,
A.
,
Passilly
,
B.
,
Fajfrowski
,
M.
,
Jardret
,
V.
, and
Mevrel
,
R.
,
2011
, “
Determination of Mechanical Properties of Bond Coat Materials by High Temperature Instrumented Indentation
,”
Mater. Tech.
,
99
(
2
), pp.
211
218
.
13.
Bolshakov
,
A.
, and
Pharr
,
G. M.
,
1998
, “
Influences of Pile Up on the Measurement of Mechanical Properties by Load and Depth Sensing Indentation Techniques
,”
J. Mater. Res.
,
13
(
4
), pp.
1049
1058
.
14.
Chen
,
X.
, and
Vlassak
,
J. J.
,
2001
, “
Numerical Study on the Measurement of Thin Film Mechanical Properties by Means of Indentation
,”
J. Mater. Res.
,
16
(
10
), pp.
2974
2982
.
15.
Alcalá
,
J.
,
2000
, “
Instrumented Micro-Indentation of Zirconia Ceramics
,”
J. Am. Ceram. Soc.
,
83
(
8
), pp.
1977
1984
.
16.
Tikhonovsky
,
A.
,
Bartsch
,
M.
, and
Messerschmidt
,
U.
,
2004
, “
Plastic Deformation of Yttria Stabilized Cubic Zirconia Single Crystals I. Activation Parameters of Deformation
,”
Phys. Status Solidi A
,
201
(
1
), pp.
26
45
.
17.
Messerschmidt
,
U.
,
Baufeld
,
B.
, and
Baither
,
D.
,
1998
, “
Plastic Deformation of Cubic Zirconia Single Crystals
,”
Key Eng. Mater.
,
153
, pp.
143
182
.
18.
Adams
,
J. W.
,
Ruh
,
R.
, and
Mazdiyasni
,
K. S.
,
1997
, “
Young's Modulus, Flexural Strength, and Fracture of Yttria-Stabilized Zirconia Versus Temperature
,”
J. Am. Ceram. Soc.
,
80
(
4
), pp.
903
908
.
19.
Sellars
,
C. M.
,
1978
, “
Recrystallization of Metals During Hot Deformation
,”
Philos. Trans. R. Soc. London A
,
288
(
1350
), pp.
147
158
.
20.
Passilly
,
B.
,
Kanoute
,
P.
,
Leroy
,
F. H.
, and
Mévrel
,
R.
,
2006
, “
High Temperature Instrumented Microindentation: Applications to Thermal Barrier Coating Constituent Materials
,”
Philos. Mag.
,
86
(
33–35
), pp.
5739
5752
.
21.
Watanabe
,
M.
,
Mercer
,
C.
,
Levi
,
C. G.
, and
Evans
,
A. G.
,
2004
, “
A Probe for the High Temperature Deformation of Thermal Barrier Oxides
,”
Acta Mater.
,
52
(
6
), pp.
1479
1487
.
22.
Steinmetz
,
J.
,
Loubet
,
J. L.
,
Guédou
,
J. Y.
,
Bauer
,
J. P.
,
Kouitat
,
R.
, and
Passilly
,
B.
,
2008
,
Analyse du Comportement Mécanique d'alliages Pour Couches de liaison de Barrière Thermique par Microindentation Instrumentée à haute Temperature
,
Thčse de doctorat de l'Institut National Polytechnique de Lorraine, Nancy
.
23.
Yang
,
Z.
, and
Wang
,
J.
,
2015
, “
Orientation-Dependent Hardness in As-Deposited and Low-Temperature Annealed Ti/Ni Multilayer Thin Films
,”
ASME J. Appl. Mech.
,
82
(
1
), p.
011008
.
24.
Zhou
,
X.
,
Jiang
,
Z.
,
Wang
,
H.
, and
Yu
,
R. X.
,
2008
, “
Investigation on Methods for Dealing With Pile-Up Errors in Evaluating the Mechanical Properties of Thin Metal Films at Sub-Micron Scale on Hard Substrates by Nanoindentation Technique
,”
Mater. Sci. Eng. A
,
488
(
1
), pp.
318
332
.
25.
Hu
,
J. Q.
,
Liu
,
Z. L.
,
Cui
,
Y. N.
,
Wang
,
Z. J.
,
Shan
,
Z. W.
, and
Zhuang
,
Z.
,
2014
, “
Sensitive Material Behavior: Theoretical Model and Experiment for Compression Collapse of Gold Particles at Submicron Scale
,”
ASME J. Appl. Mech.
,
81
(
9
), p.
091007
.
26.
Cheng
,
Y. T.
, and
Cheng
,
C. M.
,
1998
, “
Relationships Between Hardness, Elastic Modulus, and the Work of Indentation
,”
Appl. Phys. Lett.
,
73
(
5
), pp.
614
616
.
27.
Choi
,
Y.
,
Lee
,
H. S.
, and
Kwon
,
D.
,
2004
, “
Analysis of Sharp-Tip-Indentation Load–Depth Curve for Contact Area Determination Taking Into Account Pile-Up and Sink-In Effects
,”
J. Mater. Res.
,
19
(
11
), pp.
3307
3315
.
28.
Evans
,
B.
, and
Goetze
,
C.
,
1979
, “
The Temperature Variation of Hardness of Olivine and Its Implication for Polycrystalline Yield Stress
,”
J. Geophys. Res.
,
84
(
B10
), pp.
5505
5524
.
29.
Srivastava
,
A. K.
,
2007
,
Orientation, Microstructure and Pile-Up Effects on Indentation Measurements of FCC and BCC Metals
,
University of North Texas
,
Denton, TX
.
30.
Rathinam
,
M.
,
Thillaigovindan
,
R.
, and
Paramasivam
,
P.
,
2009
, “
Nanoindentation of Aluminum (100) at Various Temperatures
,”
J. Mech. Sci. Technol.
,
23
(
10
), pp.
2652
2657
.
You do not currently have access to this content.