A multiscale model based on the framework of microplane theory is developed to predict the elastic and fracturing behavior of woven composites from the mesoscale properties of the constituents and the weave architecture. The effective yarn properties are obtained by means of a simplified mesomechanical model of the yarn, based on a mixed series and parallel coupling of the fibers and of the polymer within the yarns. As a novel concept, each of the several inclined or aligned segments of an undulating fill and warp yarn is represented by a triad of orthogonal microplanes, one of which is normal to the yarn segment while another is normal to the plane of the laminate. The constitutive law is defined in terms of the microplane stress and strain vectors. The elastic and inelastic constitutive behavior is defined using the microplane strain vectors which are the projections of the continuum strain tensor. Analogous to the principle of virtual work used in previous microplane models, a strain energy density equivalence principle is employed here to obtain the continuum level elastic and inelastic stiffness tensors, which in turn yield the continuum level stress tensor. The use of strain vectors rather than tensors makes the modeling conceptually clearer as it allows capturing the orientation of fiber failures, yarn cracking, matrix microcracking, and interface slip. Application of the new microplane-triad model for a twill woven composite shows that it can realistically predict all the orthotropic elastic constants and the strength limits for various layups. In contrast with the previous (nonmicroplane) models, the formulation can capture the size effect of quasi-brittle fracture with a finite fracture process zone (FPZ). Explicit finite-element analysis gives a realistic picture of progressive axial crushing of a composite tubular crush can initiated by a divergent plug. The formulation is applicable to widely different weaves, including plain, twill, and satin weaves, and is easily extensible to more complex architectures such as hybrid weaves as well as two- and three-dimensional braids.

References

References
1.
Chou
,
T. W.
,
1992
,
Microstructural Design of Fibre Composites
,
Cambridge University Press
,
New York
.
2.
Bogdanovich
,
A. E.
, and
Pastore
,
C. M.
,
1996
,
Mechanics of Textile and Laminated Composites
,
Chapman and Hall
,
London, UK
.
3.
Bažant
,
Z. P.
,
1968
, “
Effect of Folding of Reinforcing Fibers on the Elastic Moduli and Strength of Composite Materials
,”
Mekh. Polim. (Riga)/Mech. Polym.
,
4
, pp.
314
321
(in Russian).
4.
Ishikawa
,
T.
, and
Chou
,
T. W.
,
1982
, “
Stiffness and Strength Behavior of Woven Fabric Composites
,”
J. Mater. Sci.
,
17
(
11
), pp.
3211
3220
.
5.
Ishikawa
,
T.
, and
Chou
,
T. W.
,
1983
, “
One-Dimensional Micromechanical Analysis of Woven Fabric Composites
,”
AIAA J.
,
21
(12), pp.
1714
1721
.
6.
Naik
,
N. K.
, and
Ganesh
, V
. K.
,
1992
, “
Prediction of On-Axes Elastic Properties of Plain Weave Fabric Composites
,”
Compos. Sci. Technol.
,
45
(
2
), pp.
135
152
.
7.
Hahn
,
H. T.
, and
Pandey
,
R.
,
1994
, “
A Micromechanics Model for Thermoelastic Properties of Plain Weave Fabric Composites
,”
ASME J. Eng. Mater. Technol.
,
116
(
4
), pp.
517
523
.
8.
Cox
,
B. N.
,
Carter
,
W. C.
, and
Fleck
,
N. A.
,
1994
, “
A Binary Model of Textile Composites—I Formulation
,”
Acta Metall. Mater.
,
42
(
10
), pp.
3463
3479
.
9.
Scida
,
D.
,
Aboura
,
Z.
,
Benzeggagh
,
M. L.
, and
Bocherens
,
E.
,
1998
, “
Prediction of the Elastic Behaviour of Hybrid and Non-Hybrid Woven Composites
,”
Compos. Sci. Technol.
,
57
(12), pp.
1727
1740
.
10.
Lomov
,
S. V.
,
Huysmans
,
G.
,
Luo
,
Y.
,
Parnas
,
R. S.
,
Prodromou
,
A.
,
Verpoest
,
I.
, and
Phelan
,
F. R.
,
2001
, “
Textile Composites: Modelling Strategies
,”
Composites, Part A
,
32
(
10
), pp.
1379
1394
.
11.
Quek
,
S. C.
,
Waas
,
A. M.
,
Shahwan
,
K. W.
, and
Agaram
,
V.
,
2003
, “
Analysis of 2D Triaxial Flat Braided Textile Composites
,”
Int. J. Mech. Sci.
,
45
(6–7), pp.
1077
1096
.
12.
Zhang
,
Y. C.
, and
Harding
,
J.
,
1990
, “
A Numerical Micromechanics Analysis of the Mechanical Properties of a Plain Weave Composite
,”
Comput. Struct.
,
36
(
5
), pp.
839
849
.
13.
Chapalkar
,
P.
, and
Kelkar
,
A. D.
,
2001
, “
Classical Laminate Theory Model for Twill Weave Fabric
,”
Composites, Part A
,
32
(
9
), pp.
1281
1289
.
14.
Sankar
,
B. V.
, and
Marrey
,
R. V.
,
1993
, “
A Unit-Cell Model of Textile Composite Beams for Predicting Stiffness Properties
,”
Compos. Sci. Technol.
,
49
(
1
), pp.
61
69
.
15.
Bažant
,
Z. P.
, and
Cedolin
,
L.
,
1991
,
Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories
,
1st ed.
,
Oxford University Press
,
New York
.
16.
Naik
,
R. A.
,
1995
, “
Failure Analysis of Woven and Braided Fabric Reinforced Composites
,”
J. Compos. Mater.
,
29
(
17
), pp.
2334
2363
.
17.
Scida
,
D.
,
Aboura
,
Z.
,
Benzeggagh
,
M. L.
, and
Bocherens
,
E.
,
1999
, “
A Micromechanics Model for 3D Elasticity and Failure of Woven-Fibre Composite Materials
,”
Compos. Sci. Technol.
,
59
(
4
), pp.
505
517
.
18.
Tsai
,
S. W.
, and
Wu
,
E. M.
,
1971
, “
A General Theory of Strength for Anisotropic Materials
,”
J. Compos. Mater.
,
5
(1), pp.
58
80
.
19.
Nicoletto
,
G.
, and
Riva
,
E.
,
2004
, “
Failure Mechanisms in Twill-Weave Laminates: FEM Predictions vs. Experiments
,”
Composites, Part A
,
35
(7–8), pp.
787
795
.
20.
Huang
,
Z. M.
,
2000
, “
The Mechanical Properties of Composites Reinforced With Woven and Braided Fabrics
,”
Compos. Sci. Technol.
,
60
(
4
), pp.
479
498
.
21.
Carvelli
,
V.
, and
Poggi
,
C.
,
2001
, “
A Homogenization Procedure for the Numerical Analysis of Woven Fabric Composites
,”
Composites, Part A
,
32
(
10
), pp.
1425
1432
.
22.
Prodromou
,
A. G.
,
Lomov
,
S. V.
, and
Verpoest
,
I.
,
2011
, “
The Method of Cells and the Mechanical Properties of Textile
,”
Compos. Struct.
,
93
(
4
), pp.
1290
1299
.
23.
Lomov
,
S. V.
,
Ivanov
,
D. S.
,
Verpoest
,
I.
,
Zako
,
M.
,
Kurashiki
,
T.
,
Nakai
,
H.
, and
Hirosawa
,
S.
,
2007
, “
Meso-FE Modelling of Textile Composites: Road Map, Data Flow and Algorithms
,”
Compos. Sci. Technol.
,
67
(
9
), pp.
1870
1891
.
24.
Caner
,
F. C.
,
Bažant
,
Z. P.
,
Hoover
,
C. G.
,
Waas
,
A. M.
, and
Shahwan
,
K. W.
,
2011
, “
Microplane Model for Fracturing Damage of Triaxially Braided Fiber–Polymer Composites
,”
ASME J. Appl. Mech.
,
133
, p.
021024
.
25.
Bažant
,
Z. P.
,
1984
, “
Microplane Model for Strain-Controlled Inelastic Behavior
,”
Mechanics of Engineering Materials
,
C. S.
Desai
and
R. H.
Gallagher
, eds.,
Wiley
,
London
, pp.
45
59
.
26.
Bažant
,
Z. P.
, and
Oh
,
B. H.
,
1985
, “
Microplane Model for Progressive Fracture of Concrete and Rock
,”
ASCE J. Eng. Mech.
,
111
(
4
), pp.
559
582
.
27.
Brocca
,
M.
, and
Bažant
,
Z. P.
,
2000
, “
Microplane Constitutive Model and Metal Plasticity
,”
ASME Appl. Mech. Rev.
,
53
(
10
), pp.
265
281
.
28.
Bažant
,
Z. P.
,
Caner
,
F. C.
,
Carol
,
I.
,
Adley
,
M. D.
, and
Akers
,
S. A.
,
2000
, “
Microplane Model M4 for Concrete. I: Formulation With Work-Conjugate Deviatoric Stress
,”
ASCE J. Eng. Mech.
,
126
(
9
), pp.
944
953
.
29.
Caner
,
F. C.
, and
Bažant
,
Z. P.
,
2013
, “
Microplane Model M7 for Plain Concrete. I: Formulation
,”
ASCE J. Eng. Mech.
,
139
(
12
), pp.
1714
1723
.
30.
Brocca
,
M.
,
Bažant
,
Z. P.
, and
Daniel
, I
. M.
,
2001
, “
Microplane Model for Stiff Foams and Finite Element Analysis of Sandwich Failure by Core Indentation
,”
Int. J. Solids Struct.
,
38
(44–45), pp.
8111
8132
.
31.
Cusatis
,
G.
,
Beghini
,
A.
, and
Bažant
,
Z. P.
,
2008
, “
Spectral Stiffness Microplane Model for Quasibrittle Composite Laminates—Part I: Theory
,”
ASME J. Appl. Mech.
,
75
(
2
), p.
021009
.
32.
Beghini
,
A.
,
Cusatis
,
G.
, and
Bažant
,
Z. P.
,
2008
, “
Spectral Stiffness Microplane Model for Quasibrittle Composite Laminates—Part II: Calibration and Validation
,”
ASME J. Appl. Mech.
,
75
(
2
), p.
021010
.
33.
Kirane
,
K.
,
Salviato
,
M.
, and
Bažant
,
Z. P.
, “
Microplane Triad Model for Simple and Accurate Prediction of Orthotropic Elastic Constants of Woven Fabric Composites
,”
J. Comput. Mater.
(in press).
34.
Andrianopoulos
,
N. P.
, and
Dernikas
, I
. T.
,
2013
, “
An Attempt to Separate Elastic Strain Energy Density of Linear Elastic Anisotropic Materials Based on Strains Considerations
,”
Acta Mech.
,
224
(
9
), pp.
1879
1885
.
35.
Daniel
,
I. M.
, and
Ishai
,
O.
,
1992
,
Engineering Mechanics of Composite Materials
,
Oxford University Press
,
New York
.
36.
Bažant
,
Z. P.
,
Daniel
,
I. M.
, and
Li
,
Z.
,
1996
, “
Size Effect and Fracture Characteristics of Composite Laminates
,”
ASME J. Eng. Mater. Technol.
,
118
(
3
), pp.
317
324
.
37.
ASTM, 2008
,
Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials
, ASTM International, West Conshohocken, PA, Standard No. D3039.
38.
ASTM, 2008
,
Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials With Unsupported Gage Section by Shear Loading
, ASTM International, West Conshohocken, PA, Standard No. 3410.
39.
ABAQUS
,
2011
,
ABAQUS Users Manual, Ver. 6.11-1
,
Hibbitt, Karlsson and Sorensen
,
Pawtucket, RI
.
40.
Bažant
,
Z. P.
, and
Oh
,
B.-H.
, (
1983
). “
Crack Band Theory for Fracture of Concrete
,”
Mat. Struct.
,
16
(
3
), pp.
155
177
.
41.
Jirásek
,
M.
, and
Bauer
,
M.
,
2012
, “
Numerical Aspects of the Crack Band Approach
,”
Comput. Struct.
,
110
, pp.
60
78
.
42.
Blackketter
,
D. M.
,
Walrath
,
D. E.
, and
Hansen
,
A. C.
,
1993
, “
Modeling Damage in a Plain Weave Fabric Reinforced Composite Material
,”
J. Compos. Technol. Res.
,
15
, pp.
136
142
.
43.
Bažant
,
Z. P.
,
1976
, “
Instability, Ductility, and Size Effect in Strain-Softening Concrete
,”
ASCE J. Eng. Mech. Div.
,
102
(
EM2
), pp.
331
344
.
44.
ASTM, 2008
,
Procedure B Standard Test Methods for Constituent Content of Composite Materials
, ASTM International, West Conshohocken, PA, Standard No. 3171.
45.
Salviato
,
M.
,
Kirane
,
K.
,
Cusatis
,
G.
, and
Bažant
,
Z. P.
, “
Experimental Characterization of Size Effect in Intra and Inter-Laminar Fracture in Twill Woven Fabric Composites
,” (in preparation).
46.
Mamalis
,
A. G.
,
Robinson
,
M.
,
Manolakos
,
D. E.
,
Demosthenous
,
G. A.
,
Ioannidis
,
M. B.
, and
Carruthers
,
J.
,
1997
, “
Crashworthy Capability of Composite Material Structures
,”
Comput. Struct.
,
37
(
2
), pp.
109
134
.
47.
Palanivelu
,
S.
,
Paepegema
,
W. V.
,
Degrieck
,
J.
,
Ackeren
,
J. V.
,
Kakogiannis
,
D.
,
Hemelrijck
,
D. V.
,
Wastiels
,
J.
, and
Vantommec
,
J.
,
2010
, “
Experimental Study on the Axial Crushing Behaviour of Pultruded Composite Tubes
,”
Polym. Test.
, 29(2), pp. 224–234.
48.
Bao
,
G.
,
Ho
,
S.
,
Suo
,
Z.
, and
Fan
,
B.
,
1992
, “
The Role of Material Orthotropy in Fracture Specimens for Composites
,”
Int. J. Solid Struct.
,
29
(
9
), pp.
1105
1116
(Corrigenda: Int. J. Solid Struct., 29, p. 2115).
49.
Bažant
,
Z. P.
, and
Planas
,
J.
,
1998
,
Fracture and Size Effect in Concrete and Other Quasibrittle Materials
,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.