Chiral structures have many technologically significant applications in engineering. In this paper, we investigate, both theoretically and experimentally, the structural transformation from a symmetric X-shaped tensegrity to a chiral structure under uniaxial tension. When the applied tensile force exceeds a critical value, the initially achiral structure would exhibit snap-through buckling. At the critical state, the in-plane deformation mode of the tensegrity switches into an off-plane one. The critical condition of the structural transformation is provided in terms of structural parameters. An experiment was performed to validate the theoretical model. This work may not only deepen our understanding of the stability of tensegrities but also help design chiral structures for engineering applications.

References

References
1.
Morris
,
R. E.
, and
Bu
,
X. H.
,
2010
, “
Induction of Chiral Porous Solids Containing Only Achiral Building Blocks
,”
Nat. Chem.
,
2
(
5
), pp.
353
361
.
2.
Forterre
,
Y.
, and
Dumais
,
J.
,
2011
, “
Generating Helices in Nature
,”
Science
,
333
(
6050
), pp.
1715
1716
.
3.
Zhao
,
Z. L.
,
Zhao
,
H. P.
,
Wang
,
J. S.
,
Zhang
,
Z.
, and
Feng
,
X. Q.
,
2014
, “
Mechanical Properties of Carbon Nanotube Ropes With Hierarchical Helical Structures
,”
J. Mech. Phys. Solids
,
71
, pp.
64
83
.
4.
Schulgasser
,
K.
, and
Witztum
,
A.
,
2004
, “
The Hierarchy of Chirality
,”
J. Theor. Biol.
,
230
(
2
), pp.
281
288
.
5.
Liu
,
Z. F.
,
Gandhi
,
C. S.
, and
Rees
,
D. C.
,
2009
, “
Structure of a Tetrameric MscL in an Expanded Intermediate State
,”
Nature
,
461
(
7260
), pp.
120
124
.
6.
Severcan
,
I.
,
Geary
,
C.
,
Chworos
,
A.
,
Voss
,
N.
,
Jacovetty
,
E.
, and
Jaeger
,
L.
,
2010
, “
A Polyhedron Made of tRNAs
,”
Nat. Chem.
,
2
(
9
), pp.
772
779
.
7.
Zhao
,
Z. L.
,
Huang
,
W. X.
,
Li
,
B. W.
,
Chen
,
K. X.
,
Chen
,
K. F.
,
Zhao
,
H. P.
, and
Feng
,
X. Q.
,
2015
, “
Synergistic Effects of Chiral Morphology and Reconfiguration in Cattail Leaves
,”
J. Bionic Eng.
,
12
(
4
), pp.
634
642
.
8.
Zhao
,
Z. L.
,
Zhao
,
H. P.
,
Li
,
B. W.
,
Nie
,
B. D.
,
Feng
,
X. Q.
, and
Gao
,
H. J.
,
2015
, “
Biomechanical Tactics of Chiral Growth in Emergent Aquatic Macrophytes
,”
Sci. Rep.
,
5
, p.
12610
.
9.
Schulgasser
,
K.
, and
Witztum
,
A.
,
2004
, “
Spiralling Upward
,”
J. Theor. Biol.
,
230
(
2
), pp.
275
280
.
10.
Wu
,
J.
,
Hwang
,
K. C.
,
Huang
,
Y.
, and
Song
,
J.
,
2008
, “
A Finite-Deformation Shell Theory for Carbon Nanotubes Based on the Interatomic Potential—Part I: Basic Theory
,”
ASME J. Appl. Mech.
,
75
(
6
), p.
061006
.
11.
Calladine
,
C. R.
,
Luisi
,
B. F.
, and
Pratap
,
J. V.
,
2013
, “
A ‘Mechanistic’ Explanation of the Multiple Helical Forms Adopted by Bacterial Flagellar Filaments
,”
J. Mol. Biol.
,
425
(
5
), pp.
914
928
.
12.
Wang
,
J. S.
,
Wang
,
G.
,
Feng
,
X. Q.
,
Kitamura
,
T.
,
Kang
,
Y. L.
,
Yu
,
S. W.
, and
Qin
,
Q. H.
,
2013
, “
Hierarchical Chirality Transfer in the Growth of Towel Gourd Tendrils
,”
Sci. Rep.
,
3
, p.
3102
.
13.
Zhao
,
Z. L.
,
Zhao
,
H. P.
,
Chang
,
Z.
, and
Feng
,
X. Q.
,
2014
, “
Analysis of Bending and Buckling of Pre-Twisted Beams: A Bioinspired Study
,”
Acta Mech. Sin.
,
30
(
4
), pp.
507
515
.
14.
Tee
,
Y. H.
,
Shemesh
,
T.
,
Thiagarajan
,
V.
,
Hariadi
,
R. F.
,
Anderson
,
K. L.
,
Page
,
C.
,
Volkmann
,
N.
,
Hanein
,
D.
,
Sivaramakrishnan
,
S.
,
Kozlov
,
M. M.
, and
Bershadsky
,
A. D.
,
2015
, “
Cellular Chirality Arising From the Self-Organization of the Actin Cytoskeleton
,”
Nat. Cell Biol.
,
17
(
4
), pp.
445
457
.
15.
Ye
,
H. M.
,
Wang
,
J. S.
,
Tang
,
S.
,
Xu
,
J.
,
Feng
,
X. Q.
,
Guo
,
B. H.
,
Xie
,
X. M.
,
Zhou
,
J. J.
,
Li
,
L.
,
Wu
,
Q.
, and
Chen
,
G. Q.
,
2010
, “
Surface Stress Effects on the Bending Direction and Twisting Chirality of Lamellar Crystals of Chiral Polymer
,”
Macromolecules
,
43
(
13
), pp.
5762
5770
.
16.
Guest
,
S. D.
,
Kebadze
,
E.
, and
Pellegrino
,
S.
,
2011
, “
A Zero-Stiffness Elastic Shell Structure
,”
J. Mech. Mater. Struct.
,
6
(
1–4
), pp.
203
212
.
17.
Ji
,
X. Y.
,
Zhao
,
M. Q.
,
Wei
,
F.
, and
Feng
,
X. Q.
,
2012
, “
Spontaneous Formation of Double Helical Structure Due to Interfacial Adhesion
,”
Appl. Phys. Lett.
,
100
(
26
), p.
263104
.
18.
Gruziel
,
M.
,
Dzwolak
,
W.
, and
Szymczak
,
P.
,
2013
, “
Chirality Inversions in Self-Assembly of Fibrillar Superstructures: A Computational Study
,”
Soft Matter
,
9
(
33
), pp.
8005
8013
.
19.
Wang
,
J. W.
,
Cao
,
Y. P.
, and
Feng
,
X. Q.
,
2014
, “
Archimedean Spiral Wrinkles on a Film-Substrate System Induced by Torsion
,”
Appl. Phys. Lett.
,
104
(
3
), p.
031910
.
20.
Cahill
,
K.
,
2005
, “
Helices in Biomolecules
,”
Phys. Rev. E
,
72
(
6
), p.
062901
.
21.
Snir
,
Y.
, and
Kamien
,
R. D.
,
2005
, “
Entropically Driven Helix Formation
,”
Science
,
307
(
5712
), p.
1067
.
22.
Wang
,
J. S.
,
Feng
,
X. Q.
,
Wang
,
G. F.
, and
Yu
,
S. W.
,
2008
, “
Twisting of Nanowires Induced by Anisotropic Surface Stresses
,”
Appl. Phys. Lett.
,
92
(
19
), p.
191901
.
23.
Wang
,
J. S.
,
Ye
,
H. M.
,
Qin
,
Q. H.
,
Xu
,
J.
, and
Feng
,
X. Q.
,
2012
, “
Anisotropic Surface Effects on the Formation of Chiral Morphologies of Nanomaterials
,”
Proc. R. Soc. A
,
468
(
2139
), pp.
609
633
.
24.
Armon
,
S.
,
Efrati
,
E.
,
Kupferman
,
R.
, and
Sharon
,
E.
,
2011
, “
Geometry and Mechanics in the Opening of Chiral Seed Pods
,”
Science
,
333
(
6050
), pp.
1726
1730
.
25.
Li
,
B.
,
Cao
,
Y. P.
,
Feng
,
X. Q.
, and
Gao
,
H. J.
,
2012
, “
Mechanics of Morphological Instabilities and Surface Wrinkling in Soft Materials: A Review
,”
Soft Matter
,
8
(
21
), pp.
5728
5745
.
26.
Wu
,
Z. L.
,
Moshe
,
M.
,
Greener
,
J.
,
Therien-Aubin
,
H.
,
Nie
,
Z. H.
,
Sharon
,
E.
, and
Kumacheva
,
E.
,
2013
, “
Three-Dimensional Shape Transformations of Hydrogel Sheets Induced by Small-Scale Modulation of Internal Stresses
,”
Nat. Commun.
,
4
, p.
1586
.
27.
Guo
,
Q.
,
Mehta
,
A. K.
,
Grover
,
M. A.
,
Chen
,
W.
,
Lynn
,
D. G.
, and
Chen
,
Z.
,
2014
, “
Shape Selection and Multi-Stability in Helical Ribbons
,”
Appl. Phys. Lett.
,
104
(
21
), p.
211901
.
28.
Chen
,
Z.
,
2015
, “
Shape Transition and Multi-Stability of Helical Ribbons: A Finite Element Method Study
,”
Arch. Appl. Mech.
,
85
(
3
), pp.
331
338
.
29.
Kardas
,
D.
,
Nackenhorst
,
U.
, and
Balzani
,
D.
,
2013
, “
Computational Model for the Cell-Mechanical Response of the Osteocyte Cytoskeleton Based on Self-Stabilizing Tensegrity Structures
,”
Biomech. Model. Mechanobiol.
,
12
(
1
), pp.
167
183
.
30.
Ingber
,
D. E.
,
Wang
,
N.
, and
Stamenović
,
D.
,
2014
, “
Tensegrity, Cellular Biophysics, and the Mechanics of Living Systems
,”
Rep. Prog. Phys.
,
77
(
4
), p.
046603
.
31.
Motro
,
R.
,
2003
,
Tensegrity: Structural Systems for the Future
,
Butterworth-Heinemann
,
London, UK
.
32.
Skelton
,
R. E.
, and
de Oliveira
,
M. C.
,
2009
,
Tensegrity Systems
,
Springer
,
Dordrecht, The Netherlands
.
33.
Zhang
,
L. Y.
,
Li
,
Y.
,
Cao
,
Y. P.
,
Feng
,
X. Q.
, and
Gao
,
H. J.
,
2012
, “
Self-Equilibrium and Super-Stability of Truncated Regular Polyhedral Tensegrity Structures: A Unified Analytical Solution
,”
Proc. R. Soc. A
,
468
(
2147
), pp.
3323
3347
.
34.
Zhang
,
J. Y.
, and
Ohsaki
,
M.
,
2012
, “
Self-Equilibrium and Stability of Regular Truncated Tetrahedral Tensegrity Structures
,”
J. Mech. Phys. Solids
,
60
(
10
), pp.
1757
1770
.
35.
Zhang
,
L. Y.
,
Li
,
Y.
,
Cao
,
Y. P.
,
Feng
,
X. Q.
, and
Gao
,
H. J.
,
2013
, “
A Numerical Method for Simulating Nonlinear Mechanical Responses of Tensegrity Structures Under Large Deformations
,”
ASME J. Appl. Mech.
,
80
(
6
), p.
061018
.
36.
Fraternali
,
F.
,
Carpentieri
,
G.
, and
Amendola
,
A.
,
2015
, “
On the Mechanical Modeling of the Extreme Softening/Stiffening Response of Axially Loaded Tensegrity Prisms
,”
J. Mech. Phys. Solids
,
74
, pp.
136
157
.
37.
Zhang
,
L.
,
Lu
,
M. K.
,
Zhang
,
H. W.
, and
Yan
,
B.
,
2015
, “
Geometrically Nonlinear Elasto-Plastic Analysis of Clustered Tensegrity Based on the Co-Rotational Approach
,”
Int. J. Mech. Sci.
,
93
, pp.
154
165
.
38.
Yuan
,
X. F.
,
Peng
,
Z. L.
,
Dong
,
S. L.
, and
Zhao
,
B. J.
,
2008
, “
A New Tensegrity Module—‘Torus'
,”
Adv. Struct. Eng.
,
11
(
3
), pp.
243
251
.
39.
Korkmaz
,
S.
,
Ali
,
N. B. H.
, and
Smith
,
I. F. C.
,
2011
, “
Determining Control Strategies for Damage Tolerance of an Active Tensegrity Structure
,”
Eng. Struct.
,
33
(
6
), pp.
1930
1939
.
40.
Sunny
,
M. R.
,
Sultan
,
C.
, and
Kapania
,
R. K.
,
2014
, “
Optimal Energy Harvesting From a Membrane Attached to a Tensegrity Structure
,”
AIAA J.
,
52
(
2
), pp.
307
319
.
41.
Luo
,
Y. Z.
,
Xu
,
X.
,
Lele
,
T.
,
Kumar
,
S.
, and
Ingber
,
D. E.
,
2008
, “
A Multi-Modular Tensegrity Model of an Actin Stress Fiber
,”
J. Biomech.
,
41
(
11
), pp.
2379
2387
.
42.
Stamenović
,
D.
, and
Ingber
,
D. E.
,
2009
, “
Tensegrity-Guided Self Assembly: From Molecules to Living Cells
,”
Soft Matter
,
5
(
6
), pp.
1137
1145
.
43.
Scarr
,
G.
,
2011
, “
Helical Tensegrity as a Structural Mechanism in Human Anatomy
,”
Int. J. Osteopath. Med.
,
14
(
1
), pp.
24
32
.
44.
Fraternali
,
F.
,
Senatore
,
L.
, and
Daraio
,
C.
,
2012
, “
Solitary Waves on Tensegrity Lattices
,”
J. Mech. Phys. Solids
,
60
(
6
), pp.
1137
1144
.
45.
Zhang
,
L. Y.
,
Zhang
,
C.
,
Feng
,
X. Q.
, and
Gao
,
H. J.
,
2016
, “
Snapping Instabilities in a Prismatic Tensegrity Under Torsion
,”
Appl. Math. Mech. Engl. Ed.
,
37
(in press).
46.
Zhang
,
L. Y.
, and
Xu
,
G. K.
,
2015
, “
Negative Stiffness Behaviors Emerging in Elastic Instabilities of Prismatic Tensegrities Under Torsional Loading
,”
Int. J. Mech. Sci.
,
103
, pp.
189
198
.
47.
Tibert
,
A. G.
, and
Pellegrino
,
S.
,
2003
, “
Review of Form-Finding Methods for Tensegrity Structures
,”
Int. J. Space Struct.
,
18
(
4
), pp.
209
223
.
48.
Zhang
,
L. Y.
,
Li
,
Y.
,
Cao
,
Y. P.
, and
Feng
,
X. Q.
,
2014
, “
Stiffness Matrix Based Form-Finding Method of Tensegrity Structures
,”
Eng. Struct.
,
58
, pp.
36
48
.
You do not currently have access to this content.