A series of uniaxial tests (including multilevel loading–unloading recovery, creep-recovery, and cyclic tension–compression/tension ones) were performed to investigate the monotonic and cyclic viscoelastic–viscoplastic deformations of polycarbonate (PC) polymer at room temperature. The results show that the PC exhibits strong nonlinearity and rate-dependence, and obvious ratchetting occurs during the stress-controlled cyclic tension–compression/tension tests with nonzero mean stress, which comes from both the viscoelasticity and viscoplasticity of the PC. Based on the experimental observation, a nonlinear viscoelastic–viscoplastic cyclic constitutive model is then constructed. The viscoelastic part of the proposed model is constructed by extending the Schapery's nonlinear viscoelastic model, and the viscoplastic one is established by adopting the Ohno–Abdel-Karim's nonlinear kinematic hardening rule to describe the accumulation of irrecoverable viscoplastic strain produced during cyclic loading. Furthermore, the dependence of elastic compliance of the PC on the accumulated viscoplastic strain is considered. Finally, the capability of the proposed model is verified by comparing the predicted results with the corresponding experimental ones of the PC. It is shown that the proposed model provides reasonable predictions to the various deformation characteristics of the PC presented in the multilevel loading–unloading recovery, creep-recovery, and cyclic tension–compression/tension tests.

References

References
1.
Katsamberis
,
D.
,
Browall
,
K.
,
Iacovangelo
,
C.
,
Neumann
,
M.
, and
Morgner
,
H.
,
1998
, “
Highly Durable Coatings for Automotive Polycarbonate Glazing
,”
Prog. Org. Coat.
,
34
(
1
), pp.
130
134
.
2.
Shah
,
Q. H.
, and
Abakr
,
Y. A.
,
2008
, “
Effect of Distance From the Support on the Penetration Mechanism of Clamped Circular Polycarbonate Armor Plates
,”
Int. J. Impact Eng.
,
35
(
11
), pp.
1244
1250
.
3.
Lewis
,
P. R.
,
2009
, “
Environmental Stress Cracking of Polycarbonate Catheter Connectors
,”
Eng. Failure Anal.
,
16
(
6
), pp.
1816
1824
.
4.
James
,
M. N.
,
Christopher
,
C. J.
,
Lu
,
Y.
, and
Patterson
,
E. A.
,
2012
, “
Fatigue Crack Growth and Craze-Induced Crack Tip Shielding in Polycarbonate
,”
Polymer
,
53
(
7
), pp.
1558
1570
.
5.
Shen
,
X.
,
Xia
,
Z.
, and
Ellyin
,
F.
,
2004
, “
Cyclic Deformation Behavior of an Epoxy Polymer. Part I: Experimental Investigation
,”
Polym. Eng. Sci.
,
44
(
12
), pp.
2240
2246
.
6.
Chen
,
X.
, and
Hui
,
S.
,
2005
, “
Ratchetting Behavior of PTFE Under Cyclic Compression
,”
Polym. Test.
,
24
(
7
), pp.
829
833
.
7.
Xia
,
Z.
,
Shen
,
X.
, and
Ellyin
,
F.
,
2005
, “
Biaxial Cyclic Deformation of an Epoxy Resin: Experiments and Constitutive Modeling
,”
J. Mater. Sci.
,
40
(
3
), pp.
643
654
.
8.
Averett
,
R. D.
,
Realff
,
M. L.
,
Michielsen
,
S.
, and
Neu
,
R. W.
,
2006
, “
Mechanical Behavior of Nylon 66 Fibers Under Monotonic and Cyclic Loading
,”
Compos. Sci. Technol.
,
66
(
11
), pp.
1671
1681
.
9.
Liu
,
W.
,
Gao
,
Z.
, and
Yue
,
Z.
,
2008
, “
Steady Ratchetting Strains Accumulation in Varying Temperature Fatigue Tests of PMMA
,”
Mater. Sci. Eng. A
,
492
(
1
), pp.
102
109
.
10.
Yu
,
W.
,
Chen
,
X.
,
Wang
,
Y.
,
Yan
,
L.
, and
Bai
,
N.
,
2008
, “
Uniaxial Ratchetting Behavior of Vulcanized Natural Rubber
,”
Polym. Eng. Sci.
,
48
(
1
), pp.
191
197
.
11.
Kang
,
G.
,
Liu
,
Y.
,
Wang
,
Y.
,
Chen
,
Z.
, and
Xu
,
W.
,
2009
, “
Uniaxial Ratchetting of Polymer and Polymer Matrix Composites: Time-Dependent Experimental Observations
,”
Mater. Sci. Eng. A
,
523
(
1
), pp.
13
20
.
12.
Wang
,
Y.
,
Chen
,
X.
,
Yu
,
W.
, and
Yan
,
L.
,
2009
, “
Experimental Study on Multiaxial Ratchetting Behavior of Vulcanized Natural Rubber
,”
Polym. Eng. Sci.
,
49
(
3
), pp.
506
513
.
13.
Zhang
,
Z.
, and
Chen
,
X.
,
2009
, “
Multiaxial Ratchetting Behavior of PTFE at Room Temperature
,”
Polym. Test.
,
28
(
3
), pp.
288
295
.
14.
Drozdov
,
A. D.
,
2010
, “
Effect of Temperature on the Viscoelastic and Viscoplastic Behavior of Polypropylene
,”
Mech. Time Depend. Mater.
,
14
(
4
), pp.
411
434
.
15.
Pan
,
D. X.
,
Kang
,
G. Z.
,
Zhu
,
Z. W.
, and
Liu
,
Y. J.
,
2010
, “
Experimental Study on Uniaxial Time-Dependent Ratchetting of a Polyetherimide Polymer
,”
J. Zhejiang Univ., Sci. A
,
11
(
10
), pp.
804
810
.
16.
Lu
,
F.
,
Kang
,
G.
,
Jiang
,
H.
,
Zhang
,
J.
, and
Liu
,
Y.
,
2014
, “
Experimental Studies on the Uniaxial Ratchetting of Polycarbonate Polymer at Different Temperatures
,”
Polym. Test.
,
39
, pp.
92
100
.
17.
Schapery
,
R. A.
,
1969
, “
On the Characterization of Nonlinear Viscoelastic Materials
,”
Polym. Eng. Sci.
,
9
(
4
), pp.
295
310
.
18.
Lai
,
J.
, and
Bakker
,
A.
,
1996
, “
3-D Schapery Representation for Non-Linear Viscoelasticity and Finite Element Implementation
,”
Comput. Mech.
,
18
(
3
), pp.
182
191
.
19.
Haj-Ali
,
R. M.
, and
Muliana
,
A. H.
,
2003
, “
A Micromechanical Constitutive Framework for the Nonlinear Viscoelastic Behavior of Pultruded Composite Materials
,”
Int. J. Solids Struct.
,
40
(
5
), pp.
1037
1057
.
20.
Haj-Ali
,
R. M.
, and
Muliana
,
A. H.
,
2004
, “
Numerical Finite Element Formulation of the Schapery Non-Linear Viscoelastic Material Model
,”
Int. J. Numer. Methods Eng.
,
59
(
1
), pp.
25
45
.
21.
Haj-Ali
,
R. M.
, and
Muliana
,
A. H.
,
2004
, “
A Multi-Scale Constitutive Formulation for the Nonlinear Viscoelastic Analysis of Laminated Composite Materials and Structures
,”
Int. J. Solids Struct.
,
41
(
13
), pp.
3461
3490
.
22.
Khan
,
A. S.
,
Lopez-Pamies
,
O.
, and
Kazmi
,
R.
,
2006
, “
Thermo-Mechanical Large Deformation Response and Constitutive Modeling of Viscoelastic Polymers Over a Wide Range of Strain Rates and Temperatures
,”
Int. J. Plast.
,
22
(
4
), pp.
581
601
.
23.
Lai
,
D.
,
Yakimets
,
I.
, and
Guigon
,
M.
,
2005
, “
A Non-Linear Viscoelastic Model Developed for Semi-Crystalline Polymer Deformed at Small Strains With Loading and Unloading Paths
,”
Mater. Sci. Eng. A
,
405
(
1
), pp.
266
271
.
24.
Yakimets
,
I.
,
Lai
,
D.
, and
Guigon
,
M.
,
2007
, “
Model to Predict the Viscoelastic Response of a Semi-Crystalline Polymer Under Complex Cyclic Mechanical Loading and Unloading Conditions
,”
Mech. Time Depend. Mater.
,
11
(
1
), pp.
47
60
.
25.
Ramkumar
,
A.
,
Kannan
,
K.
, and
Gnanamoorthy
,
R.
,
2010
, “
Experimental and Theoretical Investigation of a Polymer Subjected to Cyclic Loading Conditions
,”
Int. J. Eng. Sci.
,
48
(
2
), pp.
101
110
.
26.
Ayoub
,
G.
,
Zaïri
,
F.
,
Fréderix
,
C.
,
Gloaguen
,
J. M.
,
Naït-Abdelaziz
,
M.
,
Seguela
,
R.
, and
Lefebvre
,
J. M.
,
2011
, “
Effects of Crystal Content on the Mechanical Behaviour of Polyethylene Under Finite Strains: Experiments and Constitutive Modeling
,”
Int. J. Plast.
,
27
(
4
), pp.
492
511
.
27.
Zaïri
,
F.
,
Naït-Abdelaziz
,
M.
,
Gloaguen
,
J. M.
, and
Lefebvre
,
J. M.
,
2011
, “
A Physically-Based Constitutive Model for Anisotropic Damage in Rubber-Toughened Glassy Polymers During Finite Deformation
,”
Int. J. Plast.
,
27
(
1
), pp.
25
51
.
28.
Anand
,
L.
, and
Gurtin
,
M. E.
,
2003
, “
A Theory of Amorphous Solids Undergoing Large Deformations, With Application to Polymeric Glasses
,”
Int. J. Solids Struct.
,
40
(
6
), pp.
1465
1487
.
29.
Srivastava
,
V.
,
Chester
,
S. A.
,
Ames
,
N. M.
, and
Anand
,
L.
,
2010
, “
A Thermo-Mechanically-Coupled Large-Deformation Theory for Amorphous Polymers in a Temperature Range Which Spans Their Glass Transition
,”
Int. J. Plast.
,
26
(
8
), pp.
1138
1182
.
30.
Voyiadjis
,
G. Z.
,
Shojaei
,
A.
, and
Li
,
G.
,
2012
, “
A Generalized Coupled Viscoplastic–Viscodamage–Viscohealing Theory for Glassy Polymers
,”
Int. J. Plast.
,
28
(
1
), pp.
21
45
.
31.
Balieu
,
R.
,
Lauro
,
F.
,
Bennani
,
B.
,
Delille
,
R.
,
Matsumoto
,
T.
, and
Mottola
,
E.
,
2013
, “
A Fully Coupled Elastoviscoplastic Damage Model at Finite Strains for Mineral Filled Semi-Crystalline Polymer
,”
Int. J. Plast.
,
51
, pp.
241
270
.
32.
Shojaei
,
A.
, and
Li
,
G.
,
2013
, “
Viscoplasticity Analysis of Semicrystalline Polymers: A Multiscale Approach Within Micromechanics Framework
,”
Int. J. Plast.
,
42
, pp.
31
49
.
33.
Krairi
,
A.
, and
Doghri
,
I.
,
2014
, “
A Thermodynamically-Based Constitutive Model for Thermoplastic Polymers Coupling Viscoelasticity, Viscoplasticity and Ductile Damage
,”
Int. J. Plast.
,
60
, pp.
163
181
.
34.
Schapery
,
R. A.
,
1997
, “
Nonlinear Viscoelastic and Viscoplastic Constitutive Equations Based on Thermodynamics
,”
Mech. Time Depend. Mater.
,
1
(
2
), pp.
209
240
.
35.
Khan
,
A.
, and
Zhang
,
H.
,
2001
, “
Finite Deformation of a Polymer: Experiments and Modeling
,”
Int. J. Plast.
,
17
(
9
), pp.
1167
1188
.
36.
Anand
,
L.
, and
Ames
,
N. M.
,
2006
, “
On Modeling the Micro-Indentation Response of an Amorphous Polymer
,”
Int. J. Plast.
,
22
(
6
), pp.
1123
1170
.
37.
Ayoub
,
G.
,
Zaïri
,
F.
,
Naït-Abdelaziz
,
M.
, and
Gloaguen
,
J. M.
,
2010
, “
Modelling Large Deformation Behaviour Under Loading–Unloading of Semicrystalline Polymers: Application to a High Density Polyethylene
,”
Int. J. Plast.
,
26
(
3
), pp.
329
347
.
38.
Bergström
,
J. S.
,
Kurtz
,
S. M.
,
Rimnac
,
C. M.
, and
Edidin
,
A. A.
,
2002
, “
Constitutive Modeling of Ultra-High Molecular Weight Polyethylene Under Large-Deformation and Cyclic Loading Conditions
,”
Biomaterials
,
23
(
11
), pp.
2329
2343
.
39.
Xia
,
Z.
,
Hu
,
Y.
, and
Ellyin
,
F.
,
2003
, “
Deformation Behavior of an Epoxy Resin Subject to Multiaxial Loadings—Part II: Constitutive Modeling and Predictions
,”
Polym. Eng. Sci.
,
43
(
3
), pp.
734
748
.
40.
Drozdov
,
A. D.
,
2009
, “
Constitutive Model for Cyclic Deformation of Perfluoroelastomers
,”
Mech. Time Depend. Mater.
,
13
(
3
), pp.
275
299
.
41.
Drozdov
,
A. D.
,
2010
, “
Cyclic Thermo-Viscoplasticity of High Density Polyethylene
,”
Int. J. Solids Struct.
,
47
(
11
), pp.
1592
1602
.
42.
Miled
,
B.
,
Doghri
,
I.
, and
Delannay
,
L.
,
2011
, “
Coupled Viscoelastic–Viscoplastic Modeling of Homogeneous and Isotropic Polymers: Numerical Algorithm and Analytical Solutions
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
47
), pp.
3381
3394
.
43.
Nguyen
,
S. T. T.
,
Castagnet
,
S.
, and
Grandidier
,
J. C.
,
2013
, “
Nonlinear Viscoelastic Contribution to the Cyclic Accommodation of High Density Polyethylene in Tension: Experiments and Modeling
,”
Int. J. Fatigue
,
55
, pp.
166
177
.
44.
Spathis
,
G.
, and
Kontou
,
E.
,
2015
, “
Modeling of Viscoplastic Cyclic Loading Behavior of Polymers
,”
Mech. Time Depend. Mater.
,
19
(
3
), pp.
439
453
.
45.
Haouala
,
S.
, and
Doghri
,
I.
,
2015
, “
Modeling and Algorithms for Two-Scale Time Homogenization of Viscoelastic-Viscoplastic Solids Under Large Numbers of Cycles
,”
Int. J. Plast.
,
70
, pp.
98
125
.
46.
Xia
,
Z.
,
Shen
,
X.
, and
Ellyin
,
F.
,
2005
, “
An Assessment of Nonlinearly Viscoelastic Constitutive Models for Cyclic Loading: The Effect of a General Loading/Unloading Rule
,”
Mech. Time Depend. Mater.
,
9
(
4
), pp.
79
98
.
47.
Xia
,
Z.
,
Shen
,
X.
, and
Ellyin
,
F.
,
2005
, “
Cyclic Deformation Behavior of an Epoxy Polymer—Part II: Predictions of Viscoelastic Constitutive Models
,”
Polym. Eng. Sci.
,
45
(
1
), pp.
103
113
.
48.
Pan
,
D.
,
Kang
,
G.
, and
Jiang
,
H.
,
2012
, “
Viscoelastic Constitutive Model for Uniaxial Time-Dependent Ratchetting of Polyetherimide Polymer
,”
Polym. Eng. Sci.
,
52
(
9
), pp.
1874
1881
.
49.
Abdel-Karim
,
M.
, and
Ohno
,
N.
,
2000
, “
Kinematic Hardening Model Suitable for Ratchetting With Steady-State
,”
Int. J. Plast.
,
16
(
3
), pp.
225
240
.
50.
Jiang
,
H.
,
Zhang
,
J.
,
Kang
,
G.
,
Xi
,
C.
,
Jiang
,
C.
, and
Liu
,
Y.
,
2013
, “
A Test Procedure for Separating Viscous Recovery and Accumulated Unrecoverable Deformation of Polymer Under Cyclic Loading
,”
Polym. Test.
,
32
(
8
), pp.
1445
1451
.
51.
Ohno
,
N.
, and
Wang
,
J. D.
,
1993
, “
Kinematic Hardening Rules With Critical State of Dynamic Recovery—Part I: Formulation and Basic Features for Ratchetting Behavior
,”
Int. J. Plast.
,
9
(
3
), pp.
375
390
.
52.
Armstrong
,
P. J.
, and
Frederick
,
C. O.
,
1966
,
A Mathematical Representation of the Multiaxial Bauschinger Effect
,
Central Electricity Generating Board and Berkeley Nuclear Laboratories, Research and Development Department
,
London
, CEGB Report RD/B/N731.
You do not currently have access to this content.