Consisting of stretchable and flexible cell walls or ligaments, soft elastic foams exhibit extremely high fracture toughness. Using the analogy between the cellular structure and the network structure of rubbery polymers, this paper proposes a scaling law for the fracture energy of soft elastic foam. To verify the scaling law, a phase-field model for the fracture processes in soft elastic structures is developed. The numerical simulations in two-dimensional foam structures of various unit-cell geometries have all achieved good agreement with the scaling law. In addition, the dependences of the macroscopic fracture energy on geometric parameters such as the network connectivity and spatial orientation have also been revealed by the numerical results. To further enhance the fracture toughness, a type of soft foam structures with nonstraight ligaments or folded cell walls has been proposed and its performance studied numerically. Simulations have shown that an effective fracture energy one order of magnitude higher than the base material can be reached by using the soft foam structure.

References

References
1.
Maiti
,
S. K.
,
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1984
, “
Deformation and Energy Absorption Diagrams for Cellular Solids
,”
Acta Metall.
,
32
(
11
), pp.
1963
1975
.
2.
Han
,
F.
,
Zhu
,
Z.
, and
Gao
,
J.
,
1998
, “
Compressive Deformation and Energy Absorbing Characteristic of Foamed Aluminum
,”
Metall. Mater. Trans. A
,
29
(
10
), pp.
2497
2502
.
3.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1999
,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
Cambridge, UK
.
4.
Maiti
,
S. K.
,
Ashby
,
M. F.
, and
Gibson
,
L. J.
,
1984
, “
Fracture Toughness of Brittle Cellular Solids
,”
Scr. Metall.
,
18
(
3
), pp.
213
217
.
5.
Gibson
,
L. J.
,
Ashby
,
M. F.
,
Zhang
,
J.
, and
Triantafillou
,
T. C.
,
1989
, “
Failure Surfaces for Cellular Materials Under Multiaxial Loads—I. Modelling
,”
Int. J. Mech. Sci.
,
31
(
9
), pp.
635
663
.
6.
Brezny
,
R.
, and
Green
,
D. J.
,
1991
, “
Factors Controlling the Fracture Resistance of Brittle Cellular Materials
,”
J. Am. Ceram. Soc.
,
74
(
5
), pp.
1061
1065
.
7.
Chen
,
J. Y.
,
Huang
,
Y.
, and
Ortiz
,
M.
,
1998
, “
Fracture Analysis of Cellular Materials: A Strain Gradient Model
,”
J. Mech. Phys. Solids
,
46
(
5
), pp.
789
828
.
8.
Bažant
,
Z. P.
,
Zhou
,
Y.
,
Zi
,
G.
, and
Daniel
,
I. M.
,
2003
, “
Size Effect and Asymptotic Matching Analysis of Fracture of Closed-Cell Polymeric Foam
,”
Int. J. Solids Struct.
,
40
(
25
), pp.
7197
7217
.
9.
McIntyre
,
A.
, and
Anderton
,
G. E.
,
1979
, “
Fracture Properties of a Rigid Polyurethane Foam Over a Range of Densities
,”
Polymer
,
20
(
2
), pp.
247
253
.
10.
Lake
,
G. J.
, and
Thomas
,
A. G.
,
1967
, “
The Strength of Highly Elastic Materials
,”
Proc. R. Soc. London, Ser. A
,
300
(
1460
), pp.
108
119
.
11.
Thomas
,
A. G.
,
1955
, “
Rupture of Rubber. II. The Strain Concentration at an Incision
,”
J. Polym. Sci.
,
18
(
88
), pp.
177
188
.
12.
Aranson
,
I. S.
,
Kalatsky
,
V. A.
, and
Vinokur
,
V. M.
,
2000
, “
Continuum Field Description of Crack Propagation
,”
Phys. Rev. Lett.
,
85
(
1
), pp.
118
–121.
13.
Karma
,
A.
,
Kessler
,
D. A.
, and
Levine
,
H.
,
2001
, “
Phase-Field Model of Mode III Dynamic Fracture
,”
Phys. Rev. Lett.
,
87
(
4
), p.
045501
.
14.
Hakim
,
V.
, and
Karma
,
A.
,
2009
, “
Laws of Crack Motion and Phase-Field Models of Fracture
,”
J. Mech. Phys. Solids
,
57
(
2
), pp.
342
368
.
15.
Eastgate
,
L. O.
,
Sethna
,
J. P.
,
Rauscher
,
M.
,
Cretegny
,
T.
,
Chen
,
C. S.
, and
Myers
,
C. R.
,
2002
, “
Fracture in Mode I Using a Conserved Phase-Field Model
,”
Phys. Rev. E
,
65
(
3
), p.
036117
.
16.
Wang
,
Y. U.
,
Jin
,
Y. M.
, and
Khachaturyan
,
A. G.
,
2002
, “
Phase Field Microelasticity Theory and Modeling of Elastically and Structurally Inhomogeneous Solid
,”
J. Appl. Phys.
,
92
(
3
), pp.
1351
1360
.
17.
Marconi
,
V. I.
, and
Jagla
,
E. A.
,
2005
, “
Diffuse Interface Approach to Brittle Fracture
,”
Phys. Rev. E
,
71
(
3
), p.
036110
.
18.
Spatschek
,
R.
,
Hartmann
,
M.
,
Brener
,
E.
,
Müller-Krumbhaar
,
H.
, and
Kassner
,
K.
,
2006
, “
Phase Field Modeling of Fast Crack Propagation
,”
Phys. Rev. Lett.
,
96
(
1
), p.
015502
.
19.
Miehe
,
C.
,
Welschinger
,
F.
, and
Hofacker
,
M.
,
2010
, “
Thermodynamically Consistent Phase‐Field Models of Fracture: Variational Principles and Multi‐Field FE Implementations
,”
Int. J. Numer. Methods Eng.
,
83
(
10
), pp.
1273
1311
.
20.
Miehe
,
C.
, and
Schänzel
,
L. M.
,
2014
, “
Phase Field Modeling of Fracture in Rubbery Polymers. Part I: Finite Elasticity Coupled With Brittle Failure
,”
J. Mech. Phys. Solids
,
65
, pp.
93
113
.
21.
Karma
,
A.
, and
Lobkovsky
,
A. E.
,
2004
, “
Unsteady Crack Motion and Branching in a Phase-Field Model of Brittle Fracture
,”
Phys. Rev. Lett.
,
92
(
24
), p.
245510
.
22.
Henry
,
H.
, and
Levine
,
H.
,
2004
, “
Dynamic Instabilities of Fracture Under Biaxial Strain Using a Phase Field Model
,”
Phys. Rev. Lett.
,
93
(
10
), p.
105504
.
23.
Henry
,
H.
,
2008
, “
Study of the Branching Instability Using a Phase Field Model of Inplane Crack Propagation
,”
Europhys. Lett.
,
83
(
1
), p.
16004
.
24.
Griffith
,
A. A.
,
1921
, “
The Phenomena of Rupture and Flow in Solids
,”
Philos. Trans. R. Soc. London
,
221
(
582–593
), pp.
163
198
.
25.
Bazant
,
Z. P.
,
2005
,
Scaling of Structural Strength
,
Butterworth-Heinemann
, London.
26.
Hoagland
,
R. G.
,
Embury
,
J. D.
, and
Green
,
D. J.
,
1975
, “
On the Density of Microcracks Formed During the Fracture of Ceramics
,”
Scr. Metall.
,
9
(
9
), pp.
907
909
.
27.
Evans
,
A. G.
, and
Fu
,
Y.
,
1985
, “
Some Effects of Microcracks on the Mechanical Properties of Brittle Solids—II. Microcrack Toughening
,”
Acta Metall.
,
33
(
8
), pp.
1525
1531
.
28.
Hutchinson
,
J. W.
,
1987
, “
Crack Tip Shielding by Micro-Cracking in Brittle Solids
,”
Acta Metall.
,
35
(
7
), pp.
1605
1619
.
You do not currently have access to this content.