This paper is focused on the bending stiffness of a cable consisting of a straight core wound around by a layer of helical wires, taking friction into account. Depending on the interaction between the cable components, the effective bending stiffness of the cable lies between an upper bound Bmax and a lower bound Bmin according to analytic models in literature. Two finite element models are created. The first aims to determine the maximum obtainable bending stiffness, whereby two contact types are tested: one bonding together all the touching surfaces and the other one only bonding together the wire–core contact surfaces. The numerical results show that Bmax is achieved for the first contact type, while neglecting the wire–wire contact lowers the bending stiffness due to the rotation of wire cross sections. In the second model, the wires are allowed to slip, while the cable is subjected to tension and bending. The effects of the tension level, the friction coefficient, and the contact types are investigated. The numerical results are able to capture the increase of bending stiffness with increasing tension and decreasing curvature, consistent with experimental observations and analytic models. The initial bending stiffness is sensitive to the imperfect contact between the components and is lower than Bmax. The final bending stiffness is higher than Bmin because of the contribution of friction and it increases with the friction coefficient.

References

References
1.
Grason
,
G. M.
,
2015
, “
Colloquium: Geometry and Optimal Packing of Twisted Columns and Filaments
,”
Rev. Mod. Phys.
,
87
(
2
), pp.
401
419
.
2.
Costello
,
G. A.
,
1997
,
Theory of Wire Rope
,
Springer Science & Business Media
,
New York.
3.
Shahsavari
,
H.
, and
Ostoja-Starzewski
,
M.
,
2005
, “
On Elastic and Viscoelastic Helices
,”
Philos. Mag.
,
85
(
33–35
), pp.
4213
4230
.
4.
Lanteigne
,
J.
,
1985
, “
Theoretical Estimation of the Response of Helically Armored Cables to Tension, Torsion, and Bending
,”
ASME J. Appl. Mech.
,
52
(
2
), pp.
423
432
.
5.
Ramsey
,
H.
,
1990
, “
Analysis of Interwire Friction in Multilayered Cables Under Uniform Extension and Twisting
,”
Int. J. Mech. Sci.
,
32
(
8
), pp.
709
716
.
6.
Kumar
,
K.
, and
Cochran
, Jr.,
J. E.
,
1990
, “
Analytical Estimation for Static Elastic Deformations of Wire Ropes With Fibrous Core
,”
ASME J. Appl. Mech.
57
(
4
), pp.
1000
1003
.
7.
Sathikh
,
S.
,
Moorthy
,
M. B. K.
, and
Krishnan
,
M.
,
1996
, “
A Symmetric Linear Elastic Model for Helical Wire Strands Under Axisymmetric Loads
,”
J. Strain Anal. Eng. Des.
,
31
(
5
), pp.
389
399
.
8.
Xiang
,
L.
,
Wang
,
H. Y.
,
Chen
,
Y.
,
Guan
,
Y. J.
,
Wang
,
Y. L.
, and
Dai
,
L. H.
,
2015
, “
Modeling of Multi-Strand Wire Ropes Subjected to Axial Tension and Torsion Loads
,”
Int. J. Solids Struct.
,
58
, pp.
233
246
.
9.
Love
,
A.
,
1944
,
A Treatise on the Mathematical Theory of Elasticity
,
Dover Publications
,
New York
.
10.
Jiang
,
W. G.
,
Yao
,
M. S.
, and
Walton
,
J.
,
1999
, “
A Concise Finite Element Model for Simple Straight Wire Rope Strand
,”
Int. J. Mech. Sci.
,
41
(
2
), pp.
143
161
.
11.
Jiang
,
W. G.
,
Henshall
,
J. L.
, and
Walton
,
J. M.
,
2000
, “
A Concise Finite Element Model for Three-Layered Straight Wire Rope Strand
,”
Int. J. Mech. Sci.
,
42
(
1
), pp.
63
86
.
12.
Stanova
,
E.
,
Fedorko
,
G.
,
Fabian
,
M.
, and
Kmet
,
S.
,
2011
, “
Computer Modelling of Wire Strands and Ropes Part II: Finite Element-Based Applications
,”
Adv. Eng. Software
,
42
(
6
), pp.
322
331
.
13.
Stanova
,
E.
,
Fedorko
,
G.
,
Kmet
,
S.
,
Molnar
,
V.
, and
Fabian
,
M.
,
2015
, “
Finite Element Analysis of Spiral Strands With Different Shapes Subjected to Axial Loads
,”
Adv. Eng. Software
,
83
, pp.
45
58
.
14.
Fedorko
,
G.
,
Stanova
,
E.
,
Molnar
,
V.
,
Husakova
,
N.
, and
Kmet
,
S.
,
2014
, “
Computer Modelling and Finite Element Analysis of Spiral Triangular Strands
,”
Adv. Eng. Software
73
, pp.
11
21
.
15.
Judge
,
R.
,
Yang
,
Z.
,
Jones
,
S. W.
, and
Beattie
,
G.
,
2012
, “
Full 3d Finite Element Modelling of Spiral Strand Cables
,”
Constr. Build. Mater.
,
35
, pp.
452
459
.
16.
Ghoreishi
,
S. R.
,
Messager
,
T.
,
Cartraud
,
P.
, and
Davies
,
P.
,
2007
, “
Validity and Limitations of Linear Analytical Models for Steel Wire Strands Under Axial Loading, Using a 3D FE Model
,”
Int. J. Mech. Sci.
,
49
(
11
), pp.
1251
1261
.
17.
Utting
,
W. S.
, and
Jones
,
N.
,
1987
, “
The Response of Wire Rope Strands to Axial Tensile Loads—Part I. Experimental Results and Theoretical Predictions
,”
Int. J. Mech. Sci.
,
29
(
9
), pp.
605
619
.
18.
Utting
,
W. S.
, and
Jones
,
N.
,
1987
, “
The Response of Wire Rope Strands to Axial Tensile Loads—Part II. Comparison of Experimental Results and Theoretical Predictions
,”
Int. J. Mech. Sci.
,
29
(
9
), pp.
621
636
.
19.
Kumar
,
K.
, and
Botsis
,
J.
,
2001
, “
Contact Stresses in Multilayered Strands Under Tension and Torsion
,”
ASME J. Appl. Mech.
,
68
(
3
), pp.
432
440
.
20.
Sathikh
,
S.
,
Rajasekaran
,
S.
,
Jayakumar
, and
Jebaraj
,
C.
,
2000
, “
General Thin Rod Model for Preslip Bending Response of Strand
,”
J. Eng. Mech.
,
126
(
2
), pp.
132
139
.
21.
Papailiou
,
K.
,
1997
, “
On the Bending Stiffness of Transmission Line Conductors
,”
IEEE Trans. Power Delivery
,
12
(
4
), pp.
1576
1588
.
22.
Hong
,
K.-J.
,
Der Kiureghian
,
A.
, and
Sackman
,
J. L.
,
2005
, “
Bending Behavior of Helically Wrapped Cables
,”
J. Eng. Mech.
,
131
(
5
), pp.
500
511
.
23.
Dastous
,
J.-B.
,
2005
, “
Nonlinear Finite-Element Analysis of Stranded Conductors With Variable Bending Stiffness Using the Tangent Stiffness Method
,”
IEEE Trans. Power Delivery
,
20
(
1
), pp.
328
338
.
24.
Jiang
,
W.-G.
,
2012
, “
A Concise Finite Element Model for Pure Bending Analysis of Simple Wire Strand
,”
Int. J. Mech. Sci.
,
54
(
1
), pp.
69
73
.
25.
Yu
,
Y.
,
Chen
,
Z.
,
Liu
,
H.
, and
Wang
,
X.
,
2014
, “
Finite Element Study of Behavior and Interface Force Conditions of Seven-Wire Strand Under Axial and Lateral Loading
,”
Constr. Build. Mater.
,
66
, pp.
10
18
.
26.
Kmet
,
S.
,
Stanova
,
E.
,
Fedorko
,
G.
,
Fabian
,
M.
, and
Brodniansky
,
J.
,
2013
, “
Experimental Investigation and Finite Element Analysis of a Four-Layered Spiral Strand Bent Over a Curved Support
,”
Eng. Struct.
,
57
, pp.
475
483
.
27.
Goudreau
,
S.
, and
Cardou
,
A.
,
1993
, “
Flexural Testing of an Epoxy Oversized Strand Model Under Traction
,”
Exp. Mech.
,
33
(
4
), pp.
300
307
.
28.
Cardou
,
A.
, and
Jolicoeur
,
C.
,
1997
, “
Mechanical Models of Helical Strands
,”
ASME Appl. Mech. Rev.
,
50
(
1
), pp.
1
14
.
29.
Filiatrault
,
A.
, and
Stearns
,
C.
,
2005
, “
Flexural Properties of Flexible Conductors Interconnecting Electrical Substation Equipment
,”
J. Struct. Eng.
,
131
(
1
), pp.
151
159
.
30.
Bower
,
A.
,
2009
,
Applied Mechanics of Solids
,
CRC Press
,
Boca Raton, FL
.
31.
McConnell
,
K. G.
, and
Zemke
,
W. P.
,
1980
, “
The Measurement of Flexural Stiffness of Multistranded Electrical Conductors While Under Tension
,”
Exp. Mech.
,
20
(
6
), pp.
198
204
.
You do not currently have access to this content.