The impacting and rebounding behaviors of straight elastic components are investigated and a unified approach is proposed to analytically predict the whole process of the collision and rebounding of straight elastic bars and beams after each of them impinges on ideal (massless) elastic spring(s). The mathematical problems with definitive solution are formulated, respectively, for both the constrained-motion and free-motion stages, and the method of mode superposition, which is concise and straightforward especially for long-time interaction and multiple collision cases, is successfully utilized by repeatedly altering boundary and initial conditions for these successive stages. These two stages happen alternatively and the collision process terminates when the constrained motion no longer occurs. In particular, three examples are investigated in detail; they are: a straight bar impinges on an ideal elastic spring along its axis, a straight beam vertically impinges on an ideal elastic spring at the beam's midpoint, and a straight beam vertically impinges on two ideal springs with the same stiffness at the beam's two ends. Numerical results show that the coefficient of restitution (COR) and the nondimensional rebounding time (NRT) only depend on the stiffness ratio between the ideal spring(s) and the elastic bar/beam. Collision happens only once for the straight bar impinging on spring, while multiple collisions occur for the straight beam impinging on springs in the cases with large stiffness ratio. Once multiple collisions occur, COR undergoes complicated fluctuation with the increase of stiffness ratio. Approximate analytical solutions (AASs) for COR and NRT under the cases of small stiffness ratio are all derived. Finally, to validate the proposed approach in practical collision problems, the influence of the springs' mass on the collision behavior is demonstrated through numerical simulation.

References

1.
Pierazzo
,
E.
,
Artemieva
,
N.
,
Asphaug
,
E.
,
Baldwin
,
E. C.
,
Cazamias
,
J.
,
Coker
,
R.
,
Collins
,
G. S.
,
Crawford
,
D. A.
,
Davison
,
T.
,
Elbeshausen
,
D.
,
Holsapple
,
K. A.
,
Housen
,
K. R.
,
Kopycansky
,
D. G.
, and
Wunnemann
,
K.
,
2008
, “
Validation of Numerical Codes for Impact and Explosion Cratering: Impacts on Strengthless and Metal Targets
,”
Meteorit. Planet. Sci.
,
43
(
12
), pp.
1917
1938
.
2.
Lee
,
E. H.
, and
Symonds
,
P. S.
,
1952
, “
Large Plastic Deformations of Beams Under Transverse Impact
,”
ASME J. Appl. Mech.
,
19
, pp.
308
314
.
3.
Evans
,
A. G.
,
Gulden
,
M. E.
, and
Rosenblatt
,
M.
,
1978
, “
Impact Damage in Brittle Materials in the Elastic-Plastic Response Regime
,”
Proc. R. Soc. London, Ser. A
,
361
(
1706
), pp.
343
365
.
4.
Jones
,
N.
,
1989
,
Structural Impact
,
Cambridge University Press
,
New York
.
5.
Stronge
,
W. J.
, and
Yu
,
T. X.
,
1995
,
Dynamic Models for Structural Plasticity
,
Springer
,
Berlin
.
6.
Camacho
,
G. T.
, and
Ortiz
,
M.
,
1996
, “
Computational Modelling of Impact Damage in Brittle Materials
,”
Int. J. Solids Struct.
,
33
(20–22), pp.
2899
2938
.
7.
Lindberg
,
H. E.
,
1965
, “
Impact Buckling of a Thin Bar
,”
ASME J. Appl. Mech.
,
32
(
2
), pp.
315
322
.
8.
Lindberg
,
H. E.
, and
Herbert
,
R. E.
,
1966
, “
Dynamic Buckling of a Thin Cylindrical Shell Under Axial Impact
,”
ASME J. Appl. Mech.
,
33
(
1
), pp.
105
112
.
9.
Ting
,
T. C. E.
,
1966
, “
Impact of a Nonlinear Viscoplastic Rod on a Rigid Wall
,”
ASME J. Appl. Mech.
,
33
(
3
), pp.
505
513
.
10.
Ranganath
,
S.
,
1971
, “
Normal Impact of an Infinite Elastic Beam by a Semi-Infinite Elastic Rod
,”
ASME J. Appl. Mech.
,
38
(
2
), pp.
455
460
.
11.
Ju
,
J.
,
Ding
,
M.
,
Shi
,
X.
,
Ce
,
S.
,
Jiang
,
X.
, and
Chen
,
X.
,
2011
, “
Effect of Beam Height on Elastic Impact Load Subjected to Transverse Impact of Bar
,”
Key Eng. Mater.
,
462
, pp.
259
264
.
12.
Conway
,
H. D.
, and
Jakubowski
,
M.
,
1969
, “
Axial Impact of Short Cylindrical Bars
,”
ASME J. Appl. Mech.
,
36
(
4
), pp.
809
813
.
13.
Xing
,
Y. F.
,
Qiao
,
Y. S.
,
Zhu
,
D. C.
, and
Sun
,
G. J.
,
2002
, “
Elastic Impact on Finite Timoshenko Beam
,”
Acta Mech. Sin.
,
18
(
3
), pp.
252
263
.
14.
Xing
,
Y. F.
, and
Zhu
,
D. C.
,
1998
, “
Analytical Solutions of Impact Problems of Rod Structures With Springs
,”
Comput. Methods Appl. Mech. Eng.
,
160
(3–4), pp.
315
323
.
15.
Khowitar
,
E.
,
Riggs
,
H. R.
, and
Kobayashi
,
M. H.
,
2014
, “
Beam Response to Longitudinal Impact by a Pole
,”
J. Eng. Mech.
,
140
(
7
), p.
04014045
.
16.
Bao
,
S. Y.
,
Deng
,
Z. C.
, and
Huang
,
Y. A.
,
2005
, “
Analytical Solutions for Elastic Impact of Particle-Rod Structure Using DMSM
,”
International Conference on Mechanical Engineering and Mechanics
(
ICMEM2005
), Nanjing, China, Oct. 26–28, pp.
613
618
.
17.
Bao
,
S. Y.
,
Deng
,
Z. C.
, and
Chen
,
X.
,
2007
, “
Solution of Elastic Impact Problem Between Particle and Euler-Bernoulli Beam
,”
International Conference on Mechanical Engineering and Mechanics
(
ICMEM2007
), Wuxi, China, Nov. 5–7, pp.
1326
1330
.
18.
Ervin
,
E. K.
,
2009
, “
Vibro-Impact Behavior of Two Orthogonal Beams
,”
J. Eng. Mech.
,
135
(
6
), pp.
529
537
.
19.
Ervin
,
E. K.
, and
Wickert
,
J. A.
,
2007
, “
Experiments on a Beam-Rigid Body Structure Repetitively Impacting a Rod
,”
Nonlinear Dyn.
,
50
(
3
), pp.
701
716
.
20.
Wagg
,
D. J.
, and
Bishop
,
S. R.
,
2002
, “
Application of Non-Smooth Modelling Techniques to the Dynamics of a Flexible Impacting Beam
,”
J. Sound Vib.
,
256
(
5
), pp.
803
820
.
21.
Wang
,
C.
, and
Kim
,
J.
,
1996
, “
New Analysis Method for a Thin Beam Impacting Against a Stop Based on the Full Continuous Model
,”
J. Sound Vib.
,
191
(
5
), pp.
809
823
.
22.
Li
,
L. Y.
,
Thornton
,
C.
, and
Wu
,
C. Y.
,
2000
, “
Impact Behavior of Elastoplastic Spheres With a Rigid Wall
,”
Proc. Inst. Mech. Eng., Part C
,
214
(
8
), pp.
1107
1114
.
23.
Yamamoto
,
S.
,
Sato
,
K.
, and
Koseki
,
H.
,
1990
, “
A Study on Lateral Impact of Timoshenko Beam
,”
Comput. Mech.
,
6
(
2
), pp.
101
108
.
24.
Yang
,
J. L.
, and
Xi
,
F.
,
2000
, “
Dynamic Response of an Elastic-Plastic Free-Free Beam Subjected to Impact at Any Cross-Section Along Its Span
,”
Key Eng. Mater.
,
177
, pp.
273
278
.
25.
Lin
,
Y. C.
, and
Sansalone
,
M.
,
1992
, “
Transient Response of Thick Circular and Square Bars Subjected to Transverse Elastic Impact
,”
J. Acoust. Soc. Am.
,
91
(
2
), pp.
885
893
.
26.
Lin
,
Y. C.
, and
Sansalone
,
M.
,
1992
, “
Transient Response of Thick Rectangular Bars Subjected to Transverse Elastic Impact
,”
J. Acoust. Soc. Am.
,
91
(
5
), pp.
2674
2685
.
27.
Lin
,
Y. C.
,
Lai
,
W. K.
, and
Lin
,
K. L.
,
1998
, “
A Numerical Approach to Determining the Transient Response of Nonrectangular Bars Subjected to Transverse Elastic Impact
,”
J. Acoust. Soc. Am.
,
103
(
3
), pp.
1468
1474
.
28.
Thornton
,
C.
,
1997
, “
Coefficient of Restitution for Collinear Collisions of Elastic-Perfectly Plastic Spheres
,”
ASME J. Appl. Mech.
,
64
(
2
), pp.
383
386
.
29.
Wu
,
C. Y.
,
Li
,
L. Y.
, and
Thornton
,
C.
,
2003
, “
Rebound Behavior of Spheres for Plastic Impacts
,”
Int. J. Impact Eng.
,
28
(
9
), pp.
929
946
.
30.
Bao
,
R. H.
, and
Yu
,
T. X.
,
2013
, “
Impact Crushing and Rebound of Thin-Walled Hollow Spheres
,”
Key Eng. Mater.
,
535
, pp.
40
43
.
31.
Phillips
,
J. W.
, and
Calvit
,
H. H.
,
1967
, “
Impact of a Rigid Sphere on a Viscoelastic Plate
,”
ASME J. Appl. Mech.
,
34
(
4
), pp.
873
878
.
32.
Xu
,
S. Q.
,
Ruan
,
D.
,
Lu
,
G. X.
, and
Yu
,
T. X.
,
2015
, “
Collision and Rebounding of Circular Rings on Rigid Target
,”
Int. J. Impact Eng.
,
79
, pp.
14
21
.
33.
Bao
,
R. H.
, and
Yu
,
T. X.
,
2015
, “
Impact and Rebound of an Elastic-Plastic Ring on a Rigid Target
,”
Int. J. Mech. Sci.
,
91
, pp.
55
63
.
34.
Conway
,
H. D.
,
Lee
,
H. C.
, and
Bayer
,
R. G.
,
1970
, “
The Impact Between a Rigid Sphere and a Thin Layer
,”
ASME J. Appl. Mech.
,
37
(
1
), pp.
159
162
.
35.
Garnet
,
H.
, and
Armen
,
H.
,
1979
, “
Nonlinear Rebound of a Rod After Impact Against a Deformable Barrier
,”
Int. J. Numer. Methods Eng.
,
14
(
7
), pp.
1037
1050
.
36.
Hubbard
,
M.
, and
Stronge
,
W. J.
,
2001
, “
Bounce of Hollow Balls on Flat Surfaces
,”
Sports Eng.
,
4
(
2
), pp.
49
61
.
37.
Zhang
,
X. W.
,
Tao
,
Z.
, and
Zhang
,
Q. M.
,
2014
, “
Dynamic Behaviors of Visco-Elastic Thin-Walled Spherical Shells Impact Onto a Rigid Plate
,”
Lat. Am. J. Solids Struct.
,
11
(
14
), pp.
2607
2623
.
38.
Arakawa
,
K.
,
Mada
,
T.
,
Komatsu
,
H.
,
Shimizu
,
T.
,
Satou
,
M.
,
Takehara
,
K.
, and
Etoh
,
G.
,
2007
, “
Dynamic Contact Behavior of a Golf Ball During Oblique Impact: Effect of Friction Between the Ball and Target
,”
Exp. Mech.
,
47
(
2
), pp.
277
282
.
39.
Cross
,
R.
,
2014
, “
Impact Behavior of Hollow Balls
,”
Am. J. Phys.
,
82
(
3
), pp.
189
195
.
40.
Rayleigh
,
J. W. S.
,
1945
,
The Theory of Sound
,
Dover Publications
,
New York
.
You do not currently have access to this content.