We observe that posing the inverse problem as a constrained minimization problem under regularization leads to boundary dependent solutions. In this paper, we propose a modified objective function and show with 2D examples that our method works well to reduce boundary sensitive solutions. The examples consist of two stiff inclusions embedded in a softer unit square. These inclusions could be representative of tumors, which are in general stiffer than their background tissues, thus could potentially be detected based on their stiffness contrast. We modify the objective function for the displacement correlation term by weighting it with a function that depends on the strain field. In a simplified 1D coupled model, we derive an analytical expression and observe the same trends in the reconstructions as for the 2D model. The analysis in this paper is confined to inclusions of similar size and may not overlap when projected on the horizontal axis. They may, however, vary in position along the vertical axis. Furthermore, our analysis holds for an arbitrary number of inclusions having distinct stiffness values. Finally, to increase the overall contrast of the tumors and simultaneously improve the smoothness, we solve the regularized inverse problem in a posterior step, utilizing a spatially varying regularization factor.

References

References
1.
Bathe
,
K. J.
,
1996
,
Finite Element Procedures
,
Prentice Hall
,
Englewood Cliffs, NJ
.
2.
Reddy
,
J. N.
,
2005
,
An Introduction to the Finite Element Method
,
McGraw-Hill Education
,
New York
.
3.
Reddy
,
J. N.
,
2013
,
An Introduction to Nonlinear Finite Element Analysis
,
Oxford University Press
,
New York
.
4.
Babuška
,
I.
,
1973
, “
The Finite Element Method With Lagrangian Multipliers
,”
Numerische Math.
,
20
(
3
), pp.
179
192
.
5.
Dickinson
,
R. J.
, and
Hill
,
C. R.
,
1982
, “
Measurement of Soft-Tissue Motion Using Correlation Between A-Scans
,”
Ultrasound Med. Biol.
,
8
(
3
), pp.
263
271
.
6.
Hall
,
T.
,
Barbone
,
P. E.
,
Oberai
,
A. A.
,
Jiang
,
J.
,
Dord
,
J.
,
Goenezen
,
S.
, and
Fisher
,
T.
,
2011
, “
Recent Results in Nonlinear Strain and Modulus Imaging
,”
Current Med. Imaging Rev.
,
7
(
4
), pp.
313
327
.
7.
Hall
,
T. J.
,
Bilgen
,
M.
,
Insana
,
M. F.
, and
Krouskop
,
T. A.
,
1997
, “
Phantom Materials for Elastography
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
44
(
6
), pp.
1355
1365
.
8.
Hall
,
T. J.
,
Zhu
,
Y.
, and
Spalding
,
C. S.
,
2003
, “
In Vivo Real-Time Freehand Palpation Imaging
,”
Ultrasound Med. Biol.
,
29
(
3
), pp.
427
435
.
9.
Jiang
,
J.
, and
Hall
,
T. J.
,
2009
, “
A Generalized Speckle Tracking Algorithm for Ultrasonic Strain Imaging Using Dynamic Programming
,”
Ultrasound Med. Biol.
,
35
(
11
), pp.
1863
1879
.
10.
Ophir
,
J.
,
Alam
,
S. K.
,
Garra
,
B.
,
Kallel
,
F.
,
Konofagou
,
E.
,
Krouskop
,
T.
, and
Varghese
,
T.
,
1999
, “
Elastography: Ultrasonic Estimation and Imaging of the Elastic Properties of Tissues
,”
Proc. Inst. Mech. Eng. H
,
213
(
3
), pp.
203
233
.
11.
Ophir
,
J.
,
Cespedes
,
I.
,
Ponnekanti
,
H.
,
Yazdi
,
Y.
, and
Li
,
X.
,
1991
, “
Elastography: A Quantitative Method for Imaging the Elasticity of Biological Tissues
,”
Ultrason. Imaging
,
13
(
2
), pp.
111
134
.
12.
Pavan
,
T. Z.
,
Madsen
,
E. L.
,
Frank
,
G. R.
,
Adilton
,
O. C. A.
, and
Hall
,
T. J.
,
2010
, “
Nonlinear Elastic Behavior of Phantom Materials for Elastography
,”
Phys. Med. Biol.
,
55
(
9
), pp.
2679
2692
.
13.
Regner
,
D. M.
,
Hesley
,
G. K.
,
Hangiandreou
,
N. J.
,
Morton
,
M. J.
,
Nordland
,
M. R.
,
Meixner
,
D. D.
,
Hall
,
T. J.
,
Farrell
,
M. A.
,
Mandrekar
,
J. N.
,
Harmsen
,
W. S.
, and
Charboneau
,
J. W.
,
2006
, “
Breast Lesions: Evaluation With U.S. Strain Imaging–Clinical Experience of Multiple Observers
,”
Radiology
,
238
(
2
), pp.
425
437
.
14.
Wilson
,
L. S.
, and
Robinson
,
D. E.
,
1982
, “
Ultrasonic Measurement of Small Displacements and Deformations of Tissue
,”
Ultrason. Imaging
,
4
(
1
), pp.
71
82
.
15.
Zhu
,
Y.
, and
Hall
,
T. J.
,
2002
, “
A Modified Block Matching Method for Real-Time Freehand Strain Imaging
,”
Ultrason. Imaging
,
24
(
3
), pp.
161
176
.
16.
Atay
,
S. M.
,
Kroenke
,
C. D.
,
Sabet
,
A.
, and
Bayly
,
P. V.
,
2008
, “
Measurement of the Dynamic Shear Modulus of Mouse Brain Tissue In Vivo by Magnetic Resonance Elastography
,”
ASME J. Biomech. Eng.
,
130
(
2
), p.
021013
.
17.
Kwon
,
O. I.
,
Park
,
C.
,
Nam
,
H. S.
,
Woo
,
E. J.
,
Seo
,
J. K.
,
Glaser
,
K. J.
,
Manduca
,
A.
, and
Ehman
,
R. L.
,
2009
, “
Shear Modulus Decomposition Algorithm in Magnetic Resonance Elastography
,”
IEEE Trans. Med. Imaging
,
28
(
10
), pp.
1526
1533
.
18.
Muthupillai
,
R.
,
Lomas
,
D.
,
Rossman
,
P.
,
Greenleaf
,
J.
,
Manduca
,
A.
, and
Ehman
,
R.
,
1995
, “
Magnetic Resonance Elastography by Direct Visualization of Propagating Acoustic Strain Waves
,”
Science
,
269
(
5232
), pp.
1854
1857
.
19.
Neu
,
C. P.
,
Arastu
,
H. F.
,
Curtiss
,
S.
, and
Reddi
,
A. H.
,
2009
, “
Characterization of Engineered Tissue Construct Mechanical Function by Magnetic Resonance Imaging
,”
J. Tissue Eng. Regener. Med.
,
3
(
6
), pp.
477
485
.
20.
Othman
,
S. F.
,
Curtis
,
E. T.
,
Plautz
,
S. A.
,
Pannier
,
A. K.
,
Butler
,
S. D.
, and
Xu
,
H.
,
2012
, “
MR Elastography Monitoring of Tissue-Engineered Constructs
,”
NMR Biomed.
,
25
(
3
), pp.
452
463
.
21.
Othman
,
S. F.
,
Xu
,
H.
,
Royston
,
T. J.
, and
Magin
,
R. L.
,
2005
, “
Microscopic Magnetic Resonance Elastography (μMRE)
,”
Magn. Reson. Med.
,
54
(
3
), pp.
605
615
.
22.
Sack
,
I.
,
Buntkowsky
,
G.
,
Bernarding
,
J.
, and
Braun
,
J.
,
2001
, “
Magnetic Resonance Elastography: A Method for the Noninvasive and Spatially Resolved Observation of Phase Transitions in Gels
,”
J. Am. Chem. Soc.
,
123
(
44
), pp.
11087
11088
.
23.
Shah
,
N. S.
,
Kruse
,
S. A.
,
Lager
,
D. J.
,
Farell-Baril
,
G.
,
Lieske
,
J. C.
,
King
,
B. F.
, and
Ehman
,
R.
,
2004
, “
Evaluation of Renal Parenchymal Disease in a Rat Model With Magnetic Resonance Elastography
,”
Magn. Reson. Med.
,
52
(
1
), pp.
56
64
.
24.
Peng
,
L.
,
Xin
,
Y.
,
Liang
,
S.
,
Aiping
,
L.
,
Rugonyi
,
S.
, and
Wang
,
R. K.
,
2011
, “
Measurement of Strain and Strain Rate in Embryonic Chick Heart In Vivo Using Spectral Domain Optical Coherence Tomography
,”
IEEE Trans. Biomed. Eng.
,
58
(
8
), pp.
2333
2338
.
25.
Schmitt
,
J.
,
1998
, “
OCT Elastography: Imaging Microscopic Deformation and Strain of Tissue
,”
Opt. Express
,
3
(
6
), pp.
199
211
.
26.
Falzon
,
G.
,
Pearson
,
S.
, and
Murison
,
R.
,
2008
, “
Analysis of Collagen Fibre Shape Changes in Breast Cancer
,”
Phys. Med. Biol.
,
53
(
23
), pp.
6641
6652
.
27.
Burnside
,
E. S.
,
Hall
,
T. J.
,
Sommer
,
A. M.
,
Hesley
,
G. K.
,
Sisney
,
G. A.
,
Svensson
,
W. E.
, and
Hangiandreou
,
N. J.
,
2007
, “
Ultrasound Strain Imaging to Improve the Decision to Biopsy Solid Breast Masses
,”
Radiology
,
245
(
2
), pp.
401
410
.
28.
Garra
,
B. S.
,
Cespedes
,
E. I.
,
Ophir
,
J.
,
Spratt
,
S. R.
,
Zuurbier
,
R. A.
,
Magnant
,
C. M.
, and
Pennanen
,
M. F.
,
1997
, “
Elastography of Breast Lesions: Initial Clinical Results
,”
Radiology
,
202
(
1
), pp.
79
86
.
29.
Hiltawsky
,
K. M.
,
Kruger
,
M.
,
Starke
,
C.
,
Heuser
,
L.
,
Ermert
,
H.
, and
Jensen
,
A.
,
2001
, “
Freehand Ultrasound Elastography of Breast Lesions: Clinical Results
,”
Ultrasound Med. Biol.
,
27
(
11
), pp.
1461
1469
.
30.
Itoh
,
A.
,
Ueno
,
E.
,
Tohno
,
E.
,
Kamma
,
H.
,
Takahashi
,
H.
,
Shiina
,
T.
,
Yamakawa
,
M.
, and
Matsumura
,
T.
,
2006
, “
Breast Disease: Clinical Application of U.S. Elastography for Diagnosis
,”
Radiol. Soc. North Am.
,
239
(
2
), pp.
341
350
.
31.
de Korte
,
C. L.
,
van der Steen
,
A. F.
,
Cespedes
,
E. I.
, and
Pasterkamp
,
G.
,
1998
, “
Intravascular Ultrasound Elastography in Human Arteries: Initial Experience In Vitro
,”
Ultrasound Med. Biol.
,
24
(
3
), pp.
401
408
.
32.
Schaar
,
J. A.
,
de Korte
,
C. L.
,
Mastik
,
F.
,
Strijder
,
C.
,
Pasterkamp
,
G.
,
Boersma
,
E.
,
Serruys
,
P. W.
, and
van der Steen
,
A. F. W.
,
2003
, “
Characterizing Vulnerable Plaque Features With Intravascular Elastography
,”
Circulation
,
108
(
21
), pp.
2636
2641
.
33.
Shiina
,
T.
,
Nitta
,
N.
, and
Yamagishi
,
M.
,
2002
, “
Coronary Artery Characterization Based on Tissue Elasticity Imaging—In Vivo Assessment
,”
IEEE Ultrasonics Symposium
, Vol.
1852
, pp.
1855
1858
.
34.
Skovoroda
,
A. R.
,
Lubinski
,
L. A.
,
Emelianov
,
S. Y.
, and
O'Donnell
,
M.
,
1999
, “
Reconstructive Elasticity Imaging for Large Deformations
,”
IEEE Trans. Ultrason. Ferroelectr Freq Control
,
46
(
3
), pp.
523
535
.
35.
Zhu
,
Y.
,
Hall
,
T.
, and
Jiang
,
J.
,
2003
, “
A Finite-Element Approach for Young's Modulus Reconstruction
,”
IEEE Trans. Med. Imaging
,
22
(
7
), pp.
890
901
.
36.
Prusa
,
V.
,
Rajagopal
,
K. R.
, and
Saravanan
,
U.
,
2013
, “
Fidelity of the Estimation of the Deformation Gradient From Data Deduced From the Motion of Markers Placed on a Body That is Subject to an Inhomogeneous Deformation Field
,”
ASME J. Biomech. Eng.
,
135
(
8
), p.
081004
.
37.
Doyley
,
M. M.
,
Meaney
,
P. M.
, and
Bamber
,
J. C.
,
2000
, “
Evaluation of an Iterative Reconstruction Method for Quantitative Elastography
,”
Phys. Med. Biol.
,
45
(
6
), pp.
1521
1540
.
38.
Kallel
,
F.
, and
Bertrand
,
M.
,
1996
, “
Tissue Elasticity Reconstruction Using Linear Perturbation Method
,”
IEEE Trans. Med. Imaging
,
15
(
3
), pp.
299
313
.
39.
Barbone
,
P.
,
Oberai
,
A. A.
,
Bamber
,
J. C.
,
Berry
,
G. P.
,
Dord
,
J.
,
Ferreira
,
E. R.
,
Goenezen
,
S.
, and
Hall
,
T.
,
2014
, “
Biomechanical Imaging: Elastography Beyond Young's Modulus
,”
CRC Handbook of Imaging in Biological Mechanics
,
CRC Press
,
Boca Raton, FL
.
40.
Goenezen
,
S.
,
2011
, “
Inverse Problems in Finite Elasticity: An Application to Imaging the Nonlinear Elastic Properties of Soft Tissues
,” Ph.D. dissertation,
Rensselaer Polytechnic Institute
,
Troy, NY
.
41.
Goenezen
,
S.
,
Barbone
,
P.
, and
Oberai
,
A. A.
,
2011
, “
Solution of the Nonlinear Elasticity Imaging Inverse Problem: The Incompressible Case
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
13–16
), pp.
1406
1420
.
42.
Goenezen
,
S.
,
Dord
,
J. F.
,
Sink
,
Z.
,
Barbone
,
P.
,
Jiang
,
J.
,
Hall
,
T. J.
, and
Oberai
,
A. A.
,
2012
, “
Linear and Nonlinear Elastic Modulus Imaging: An Application to Breast Cancer Diagnosis
,”
IEEE Trans. Med. Imaging
,
31
(
8
), pp.
1628
1637
.
43.
Goenezen
,
S.
,
Oberai
,
A. A.
,
Dord
,
J.
,
Sink
,
Z.
, and
Barbone
,
P.
,
2011
, “
Nonlinear Elasticity Imaging
,”
IEEE 37th Annual Northeast Bioengineering Conference
(
NEBEC
), Troy, NY, Apr. 1–3.
44.
Gokhale
,
N. H.
,
Barbone
,
P.
, and
Oberai
,
A. A.
,
2008
, “
Solution of the Nonlinear Elasticity Imaging Inverse Problem: The Compressible Case
,”
Inverse Probl.
,
24
(
4
), pp.
1406
1420
.
45.
Mei
,
Y.
, and
Goenezen
,
S.
,
2015
, “
Spatially Weighted Objective Function to Solve the Inverse Problem in Elasticity for the Elastic Property Distribution
,”
Computational Biomechanics for Medicine: New Approaches and New Applications
,
B. J.
Doyle
,
K.
Miller
,
A.
Wittek
, and
P. M. F.
Nielson
, eds.,
Springer
,
Cham, Switzerland.
46.
Byrd
,
R. H.
,
Lu
,
P.
,
Nocedal
,
J.
, and
Zhu
,
C.
,
1995
, “
A Limited Memory Algorithm for Bound Constrained Optimization
,”
SIAM J. Sci. Comput.
,
16
(
5
), pp.
1190
1208
.
47.
Zhu
,
C.
,
Byrd
,
R. H.
,
Lu
,
P.
, and
Nocedal
,
J.
,
1994
, “
L-BFGS-B: FORTRAN Subroutines for Large Scale Bound Constrained Optimization'
,” EECS Department, Northwestern University, Evanston, IL, Technical Report No. NAM-11.
48.
Zhu
,
C.
,
Byrd
,
R. H.
,
Lu
,
P.
, and
Nocedal
,
J.
,
1994
, “
L-BFGS-B: A Limited Memory FORTRAN Code for Solving Bound Constrained Optimization Problems
,” EECS Department, Northwestern University, Evanston, IL, Technical Report No. NAM-11.
49.
Dorn
,
O.
,
Bertete-Aguirre
,
H.
,
Berryman
,
J. G.
, and
Papanicolaou
,
G. C.
,
1999
, “
A Nonlinear Inversion Method for 3D Electromagnetic Imaging Using Adjoint Fields
,”
Inverse Probl.
,
15
(
6
), pp.
1523
1558
.
50.
Tyagi
,
M.
,
Goenezen
,
S.
,
Barbone
,
P.
, and
Oberai
,
A. A.
,
2014
, “
Algorithms for Quantitative Quasi-Static Elasticity Imaging Using Force Data
,”
Int. J. Numer. Methods Biomed. Eng.
,
30
(
12
), pp.
1421
1436
.
51.
Hughes
,
T. J. R.
,
Franca
,
L. P.
, and
Balestra
,
M.
,
1986
, “
A New Finite Element Formulation for Computational Fluid Dynamics: V. Circumventing the Babuska-Brezzi Condition: A Stable Petrov-Galerkin Formulation of the Stokes Problem Accommodating Equal-Order Interpolations
,”
Comput. Methods Appl. Mech. Eng.
,
59
(
1
), pp.
85
99
.
52.
Maniatty
,
A. M.
,
Liu
,
Y.
,
Klaas
,
O.
, and
Shephard
,
M. S.
,
2002
, “
Higher Order Stabilized Finite Element Method for Hyperelastic Finite Deformation
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
13–14
), pp.
1491
1503
.
53.
Oberai
,
A. A.
,
Gokhale
,
N. H.
,
Goenezen
,
S.
,
Barbone
,
P.
,
Hall
,
T.
,
Sommer
,
A. M.
, and
Jiang
,
J.
,
2009
, “
Linear and Nonlinear Elasticity Imaging of Tissue In-Vivo: Demonstration of Feasibility
,”
Phys. Med. Biol.
,
54
(
5
), pp.
1191
1207
.
54.
Calvetti
,
D.
,
Morigi
,
S.
,
Reichel
,
L.
, and
Sgallari
,
F.
,
2000
, “
Tikhonov Regularization and the L-Curve for Large Discrete Ill-Posed Problems
,”
J. Comput. Appl. Math.
,
123
(
2
), pp.
423
446
.
55.
Chvetsov
,
A. V.
,
2005
, “
L-Curve Analysis of Radiotherapy Optimization Problems
,”
Med. Phys.
,
32
(
8
), pp.
2598
2605
.
56.
Vogel
,
C. R.
,
1996
, “
Non-Convergence of the L-Curve Regularization Parameter Selection Method
,”
Inverse Probl.
,
12
(
4
), pp.
535
547
.
57.
Vogel
,
C. R.
,
2002
,
Computational Methods for Inverse Problems
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
58.
Anzengruber
,
S.
, and
Ramlau
,
R.
,
2010
, “
Morozov's Discrepancy Principle for Tikhonov-Type Functionals With Nonlinear Operators
,”
Inverse Probl.
,
26
(
2
), p. 025001.
59.
Bonesky
,
T.
,
2009
, “
Morozov's Discrepancy Principle and Tikhonov-Type Functionals
,”
Inverse Probl.
,
25
(
1
), p. 015015.
60.
Frick
,
K.
,
Lorenz
,
D.
, and
Resmerita
,
E.
,
2011
, “
Morozov's Principle for the Augmented Lagrangian Method Applied to Linear Inverse Problems
,”
Multiscale Model. Simul.
,
9
(
4
), pp.
1528
1548
.
61.
Oberai
,
A. A.
,
Gokhale
,
N. H.
, and
Feijóo
,
G. R.
,
2003
, “
Solution of Inverse Problems in Elasticity Imaging Using the Adjoint Method
,”
Inverse Probl.
,
19
(
2
), pp.
297
313
.
62.
Richards
,
M. S.
, and
Doyley
,
M. M.
,
2011
, “
Investigating the Impact of Spatial Priors on the Performance of Model-Based IVUS Elastography
,”
Phys. Med. Biol.
,
56
(
22
), pp.
7223
7246
.
You do not currently have access to this content.