This paper proposes a novel solution strategy for Saint-Venant's problem based on Hamilton's formalism. Saint-Venant's problem focuses on helicoidal beams and its solution hinges upon the determination of the subspace of the system's Hamiltonian matrix associated with its null and pure imaginary eigenvalues. A projection approach is proposed that reduces the system Hamiltonian matrix to a matrix of size 12 × 12, whose eigenvalues are identical to the null and purely imaginary eigenvalues of the original system, with the same Jordan structure. A fundamental theoretical result is established: Saint-Venant's solutions exist because rigid-body motions create no strains. Indeed, the solvability conditions for the governing equations of the problem are satisfied because a matrix identity holds, which expresses the fact that rigid-body motions create no strains. Because it avoids the identification of the Jordan structure of the original system, the implementation of the proposed projection for large, realistic problems is straightforward. Closed-form solutions of the reduced problem are found and three-dimensional stress and strain fields can be recovered from the closed-form solution. Numerical examples are presented to demonstrate the capabilities of the analysis. Predictions are compared to exact solutions of three-dimensional elasticity and three-dimensional FEM analysis.

References

References
1.
de Saint-Venant
,
J. C.-B.
,
1855
, “
Mémoire sur la Torsion des Prismes
,”
Receuil Savants Étrangers
,
14
, pp.
233
560
.
2.
de Saint-Venant
,
J. C.-B.
,
1856
, “
Mémoire sur la Flexion des Prismes
,”
J. Math. Liouville
,
1
, pp.
89
189
.
3.
Love
,
A.
,
1944
,
A Treatise on the Mathematical Theory of Elasticity
,
4th ed.
,
Dover
,
New York
.
4.
Timoshenko
,
S.
, and
Goodier
,
J.
,
1970
,
Theory of Elasticity
,
3rd ed.
,
McGraw-Hill
,
New York
.
5.
Lekhnitskii
,
S.
,
1977
,
Theory of Elasticity of an Anisotropic Body
,
2nd ed.
,
MIR Publishers
,
Moscow, Russia
.
6.
Ieşan
,
D.
,
1976
, “
Saint-Venant's Problem for Inhomogeneous and Anisotropic Elastic Bodies
,”
J. Elasticity
,
6
(
3
), pp.
277
294
.
7.
Ieşan
,
D.
,
1986
, “
On Saint-Venant's Problem
,”
Arch. Ration. Mech. Anal.
,
91
(
4
), pp.
363
373
.
8.
Dong
,
S.
,
Kosmatka
,
J.
, and
Lin
,
H.
,
2001
, “
On Saint-Venant's Problem for an Inhomogeneous, Anisotropic Cylinder-Part I: Methodology for Saint-Venant Solutions
,”
ASME J. Appl. Mech.
,
68
(
3
), pp.
376
381
.
9.
Kosmatka
,
J.
,
Lin
,
H.
, and
Dong
,
S.
,
2001
, “
On Saint-Venant's Problem for an Inhomogeneous, Anisotropic Cylinder-Part II: Cross-Sectional Properties
,”
ASME J. Appl. Mech.
,
68
(
3
), pp.
382
391
.
10.
Lin
,
H.
,
Kosmatka
,
J.
, and
Dong
,
S.
,
2001
, “
On Saint-Venant's Problem for an Inhomogeneous, Anisotropic Cylinder-Part III: End Effects
,”
ASME J. Appl. Mech.
,
68
(
3
), pp.
392
398
.
11.
Berdichevsky
,
V.
,
1982
, “
On the Energy of an Elastic Rod
,”
Prikl. Mat. Mekanika
,
45
(
4
), pp.
518
529
.
12.
Atilgan
,
A.
, and
Hodges
,
D.
,
1991
, “
Unified Nonlinear Analysis for Nonhomogeneous Anisotropic Beams With Closed Cross-Sections
,”
AIAA J.
,
29
(
11
), pp.
1990
1999
.
13.
Atilgan
,
A.
,
Hodges
,
D.
, and
Fulton
,
M.
,
1991
, “
Nonlinear Deformation of Composite Beams: Unification of Cross-Sectional and Elastica Analyses
,”
ASME Appl. Mech. Rev.
,
44
(
11
), pp.
S9
S15
.
14.
Hodges
,
D.
,
2006
,
Nonlinear Composite Beam Theory
,
AIAA
,
Reston, VA
.
15.
Yu
,
W.
,
Hodges
,
D.
,
Volovoi
,
V.
, and
Cesnik
,
C.
,
2002
, “
On Timoshenko-Like Modeling of Initially Curved and Twisted Composite Beams
,”
Int. J. Solids Struct.
,
39
(
19
), pp.
5101
5121
.
16.
Buannic
,
N.
, and
Cartraud
,
P.
,
2001
, “
Higher-Order Effective Modeling of Periodic Heterogeneous Beams. I. Asymptotic Expansion Method
,”
Int. J. Solids Struct.
,
38
(
40–41
), pp.
7139
7161
.
17.
Buannic
,
N.
, and
Cartraud
,
P.
,
2001
, “
Higher-Order Effective Modeling of Periodic Heterogeneous Beams. II. Derivation of the Proper Boundary Conditions for the Interior Asymptotic Solution
,”
Int. J. Solids Struct.
,
38
(
40–41
), pp.
7163
7180
.
18.
Kim
,
J. S.
,
Cho
,
M.
, and
Smith
,
E. C.
,
2008
, “
An Asymptotic Analysis of Composite Beams With Kinematically Corrected End Effects
,”
Int. J. Solids Struct.
,
45
(
7–8
), pp.
1954
1977
.
19.
Giavotto
,
V.
,
Borri
,
M.
,
Mantegazza
,
P.
,
Ghiringhelli
,
G.
,
Carmaschi
,
V.
,
Maffioli
,
G.
, and
Mussi
,
F.
,
1983
, “
Anisotropic Beam Theory and Applications
,”
Comput. Struct.
,
16
(
1–4
), pp.
403
413
.
20.
Borri
,
M.
,
Ghiringhelli
,
G.
, and
Merlini
,
T.
,
1992
, “
Linear Analysis of Naturally Curved and Twisted Anisotropic Beams
,”
Compos. Eng.
,
2
(
5–7
), pp.
433
456
.
21.
Mielke
,
A.
,
1988
, “
Saint-Venant's Problem and Semi-Inverse Solutions in Nonlinear Elasticity
,”
Arch. Ration. Mech. Anal.
,
102
(
3
), pp.
205
229
.
22.
Mielke
,
A.
,
1990
, “
Normal Hyperbolicity of Center Manifolds and Saint-Venant's Principle
,”
Arch. Ration. Mech. Anal.
,
110
(
4
), pp.
353
372
.
23.
Zhong
,
W.
,
1991
, “
Plane Elasticity Problem in Strip Domain and Hamiltonian System
,”
J. Dalian Univ. Technol.
,
31
(
4
), pp.
373
384
.
24.
Zhong
,
W.
,
1995
,
A New Systematic Methodology for Theory of Elasticity
,
Dalian University of Technology Press
,
Dalian, China
.
25.
Morandini
,
M.
,
Chierichetti
,
M.
, and
Mantegazza
,
P.
,
2010
, “
Characteristic Behavior of Prismatic Anisotropic Beam Via Generalized Eigenvectors
,”
Int. J. Solids Struct.
,
47
(
10
), pp.
1327
1337
.
26.
Druz
,
A.
, and
Ustinov
,
Y.
,
1996
, “
Green's Tensor for an Elastic Cylinder and Its Applications in the Development of the Saint-Venant Theory
,”
J. Appl. Math. Mech.
,
60
(
1
), pp.
97
104
.
27.
Druz
,
A.
,
Polyakov
,
N.
, and
Ustinov
,
Y.
,
1996
, “
Homogeneous Solutions and Saint-Venant Problems for a Naturally Twisted Rod
,”
J. Appl. Math. Mech.
,
60
(
4
), pp.
657
664
.
28.
Ustinov
,
Y. A.
,
2003
, “
Solutions of the Saint Venant Problem for a Cylinder With Helical Anisotropy
,”
J. Appl. Math. Mech.
,
67
(
1
), pp.
89
98
.
29.
Ladevèze
,
P.
, and
Simmonds
,
J.
,
1998
, “
New Concepts for Linear Beam Theory With Arbitrary Geometry and Loading
,”
Eur. J. Mech.: A/Solids
,
17
(
3
), pp.
377
402
.
30.
Fatmi
,
R. E.
, and
Zenzri
,
H.
,
2002
, “
On the Structural Behavior and the Saint-Venant Solution in the Exact Beam Theory: Application to Laminated Composite Beams
,”
Comput. Struct.
,
80
(
16–17
), pp.
1441
1456
.
31.
Fatmi
,
R. E.
, and
Zenzri
,
H.
,
2004
, “
A Numerical Method for the Exact Elastic Beam Theory. Applications to Homogeneous and Composite Beams
,”
Int. J. Solids Struct.
,
41
(
9–10
), pp.
2521
2537
.
32.
Bauchau
,
O.
, and
Han
,
S.
,
2014
, “
Three-Dimensional Beam Theory for Flexible Multibody Dynamics
,”
J. Comput. Nonlinear Dyn.
,
9
(
4
), p.
041011
.
33.
Han
,
S.
, and
Bauchau
,
O.
,
2015
, “
Nonlinear Three-Dimensional Beam Theory for Flexible Multibody Dynamics
,”
Multibody Syst. Dyn.
,
34
(
3
), pp.
211
242
.
34.
Bauchau
,
O.
,
2011
,
Flexible Multibody Dynamics
,
Springer
,
Dordrecht
.
35.
Lanczos
,
C.
,
1970
,
The Variational Principles of Mechanics
,
Dover
,
New York
.
36.
Borri
,
M.
, and
Bottasso
,
C.
,
1993
, “
A General Framework for Interpreting Time Finite Element Formulations
,”
Comput. Mech.
,
13
(
3
), pp.
133
142
.
37.
Yao
,
W.
,
Zhong
,
W.
, and
Lim
,
C.
,
2009
,
Symplectic Elasticity
,
World Scientific
,
Hackensack, NJ
.
38.
Freiberger
,
W.
,
1949
, “
The Uniform Torsion of an Incomplete Tore
,”
Aust. J. Sci. Res., Ser. A
,
2
(
3
), pp.
354
375
.
You do not currently have access to this content.