The contact behavior of an elastic film subjected to a mismatch strain on a finite-thickness graded substrate is investigated, in which the contact interface is assumed to be nonslipping and the shear modulus of the substrate varies exponentially in the thickness direction. The Fourier transform method is adopted in order to reduce the governing partial differential equations to integral ones. With the help of numerical calculation, the interfacial shear stress, the internal normal stress in the film and the stress intensity factors are predicted for cases with different material parameters and geometric ones, including the modulus ratio of the film to the substrate, the inhomogeneous feature of the graded substrate, as well as the profile of the contacting film. All the physical predictions can be used to estimate the potential failure modes of the film–substrate interface. Furthermore, it is found that the result of a finite-thickness model is significantly different from the prediction of a generally adopted half-plane one. The study should be helpful for the design of film–substrate systems in real applications.

References

References
1.
Freund
,
L. B.
, and
Suresh
,
S.
,
2004
,
Thin Film Materials: Stress, Defect Formation and Surface Evolution
,
Cambridge University Press
, Cambridge, UK.
2.
Chen
,
H.
,
Feng
,
X.
, and
Chen
,
Y.
,
2014
, “
Slip Zone Model for Interfacial Failures of Stiff Film/Soft Substrate Composite System in Flexible Electronics
,”
Mech. Mater.
,
79
, pp.
35
44
.
3.
Banerjee
,
S.
, and
Marchetti
,
M. C.
,
2012
, “
Contractile Stresses in Cohesive Cell Layers on Finite-Thickness Substrates
,”
Phys. Rev. Lett.
,
109
(
10
), p.
108101
.
4.
Akisanya
,
A. R.
, and
Fleck
,
N. A.
,
1994
, “
The Edge Cracking and Decohesion of Thin Films
,”
Int. J. Solids Struct.
,
31
(
23
), pp.
3175
3199
.
5.
Yu
,
H. H.
,
He
,
M. Y.
, and
Hutchinson
,
J. W.
,
2001
, “
Edge Effects in Thin Film Delamination
,”
Acta Mater.
,
49
(
1
), pp.
93
107
.
6.
Alaca
,
B. E.
,
Saif
,
M. T. A.
, and
Sehitoglu
,
H.
,
2002
, “
On the Interface Debond at the Edge of a Thin Film on a Thick Substrate
,”
Acta Mater.
,
50
(
5
), pp.
1197
1209
.
7.
Guler
,
M. A.
,
Gulver
,
Y. F.
, and
Nart
,
E.
,
2012
, “
Contact Analysis of Thin Films Bonded to Graded Coatings
,”
Int. J. Mech. Sci.
,
55
(
1
), pp.
50
64
.
8.
Arutiunian
,
N. K.
,
1968
, “
Contact Problem for a Half-Plane With Elastic Reinforcement
,”
PMM-J. Appl. Math. Mech.
,
32
(
4
), pp.
652
665
.
9.
Erdogan
,
F.
, and
Gupta
,
G. D.
,
1971
, “
The Problem of an Elastic Stiffener Bonded to a Half Plane
,”
ASME J. Appl. Mech.
,
38
(
4
), pp.
937
941
.
10.
Erdogan
,
F.
, and
Civelek
,
M.
,
1974
, “
Contact Problem for an Elastic Reinforcement Bonded to an Elastic Plate
,”
ASME J. Appl. Mech.
,
41
(
4
), pp.
1014
1018
.
11.
Erdogan
,
F.
, and
Joseph
,
P. F.
,
1990
, “
Mechanical Modeling of Multilayered Films on an Elastic Substrate—Part I: Analysis
,”
ASME J. Electron. Packag.
,
112
(
4
), pp.
309
316
.
12.
Erdogan
,
F.
, and
Joseph
,
P. F.
,
1990
, “
Mechanical Modeling of Multilayered Films on an Elastic Substrate—Part II: Results and Discussion
,”
ASME J. Electron. Packag.
,
112
(
4
), pp.
317
326
.
13.
Hu
,
S. M.
,
1979
, “
Film-Edge-Induced Stress in Substrates
,”
J. Appl. Phys.
,
50
(
7
), pp.
4661
4666
.
14.
Shield
,
T. W.
, and
Kim
,
K. S.
,
1992
, “
Beam Theory Models for Thin Film Segments Cohesively Bonded to an Elastic Half Space
,”
Int. J. Solids Struct.
,
29
(
9
), pp.
1085
1103
.
15.
Suresh
,
S.
,
2001
, “
Graded Materials for Resistance to Contact Deformation and Damage
,”
Science
,
292
(
5526
), pp.
2447
2451
.
16.
Giannakopoulos
,
A. E.
, and
Suresh
,
S.
,
1997
, “
Indentation of Solids With Gradients in Elastic Properties. 1. Point Force
,”
Int. J. Solids Struct.
,
34
(
19
), pp.
2357
2392
.
17.
Giannakopoulos
,
A. E.
, and
Suresh
,
S.
,
1997
, “
Indentation of Solids With Gradients in Elastic Properties. 2. Axisymmetric Indentors
,”
Int. J. Solids Struct.
,
34
(
19
), pp.
2393
2428
.
18.
Choi
,
H. J.
, and
Paulino
,
G. H.
,
2008
, “
Thermoelastic Contact Mechanics for a Flat Punch Sliding Over a Graded Coating/Substrate System With Frictional Heat Generation
,”
J. Mech. Phys. Solids
,
56
(
4
), pp.
1673
1692
.
19.
Guler
,
M. A.
, and
Erdogan
,
F.
,
2004
, “
Contact Mechanics of Graded Coatings
,”
Int. J. Solids Struct.
,
41
(
14
), pp.
3865
3889
.
20.
Guler
,
M. A.
, and
Erdogan
,
F.
,
2007
, “
The Frictional Sliding Contact Problems of Rigid Parabolic and Cylindrical Stamps on Graded Coatings
,”
Int. J. Mech. Sci.
,
49
(
2
), pp.
161
182
.
21.
Ke
,
L. L.
, and
Wang
,
Y. S.
,
2006
, “
Two-Dimensional Contact Mechanics of Functionally Graded Materials With Arbitrary Spatial Variations of Material Properties
,”
Int. J. Solids Struct.
,
43
(
18–19
), pp.
5779
5798
.
22.
Ke
,
L. L.
, and
Wang
,
Y. S.
,
2007
, “
Two-Dimensional Sliding Frictional Contact of Functionally Graded Materials
,”
Eur. J. Mech. A-Solids
,
26
(
1
), pp.
171
188
.
23.
Mao
,
J. J.
,
Ke
,
L. L.
, and
Wang
,
Y. S.
,
2014
, “
Thermoelastic Contact Instability of a Functionally Graded Layer and a Homogeneous Half-Plane
,”
Int. J. Solids Struct.
,
51
(
23–24
), pp.
3962
3972
.
24.
Chen
,
S. H.
,
Yan
,
C.
, and
Soh
,
A.
,
2009
, “
Adhesive Behavior of Two-Dimensional Power-Law Graded Materials
,”
Int. J. Solids Struct.
,
46
(
18–19
), pp.
3398
3404
.
25.
Chen
,
S. H.
,
Yan
,
C.
,
Zhang
,
P.
, and
Gao
,
H. J.
,
2009
, “
Mechanics of Adhesive Contact on a Power-Law Graded Elastic Half-Space
,”
J. Mech. Phys. Solids
,
57
(
9
), pp.
1437
1448
.
26.
Guo
,
X.
,
Jin
,
F.
, and
Gao
,
H. J.
,
2011
, “
Mechanics of Non-Slipping Adhesive Contact on a Power-Law Graded Elastic Half-Space
,”
Int. J. Solids Struct.
,
48
(
18
), pp.
2565
2575
.
27.
Jin
,
F.
,
Guo
,
X.
, and
Gao
,
H.
,
2013
, “
Adhesive Contact on Power-Law Graded Elastic Solids: The JKR-DMT Transition Using a Double-Hertz Model
,”
J. Mech. Phys. Solids
,
61
(
12
), pp.
2473
2492
.
28.
Guler
,
M. A.
,
2008
, “
Mechanical Modeling of Thin Films and Cover Plates Bonded to Graded Substrates
,”
ASME J. Appl. Mech.
,
75
(
5
), p.
051105
.
29.
Chen
,
P.
, and
Chen
,
S.
,
2013
, “
Thermo-Mechanical Contact Behavior of a Finite Graded Layer Under a Sliding Punch With Heat Generation
,”
Int. J. Solids Struct.
,
50
(
7
), pp.
1108
1119
.
30.
Chen
,
P.
,
Chen
,
S.
, and
Peng
,
J.
,
2015
, “
Sliding Contact Between a Cylindrical Punch and a Graded Half-Plane With an Arbitrary Gradient Direction
,”
ASME J. Appl. Mech.
,
82
(
4
), p.
041008
.
31.
Gladwell
,
G. M. L.
,
1980
,
Contact Problems in the Classical Theory of Elasticity
,
Martinus Nijhoff Publishers
,
The Hague, The Netherlands
.
32.
Erdogan
,
F.
,
Gupta
,
G. D.
, and
Cook
,
T. S.
,
1973
, “
Numerical Solution of Singular Integral Equations
,”
Methods of Analysis and Solutions of Crack Problems
,
G.
Sih
, ed.,
Springer, Dordrecht
, pp.
368
425
.
You do not currently have access to this content.