In this paper, an approximate semi-analytical approach is developed for determining the first-passage probability of randomly excited linear and lightly nonlinear oscillators endowed with fractional derivative elements. The amplitude of the system response is modeled as one-dimensional Markovian process by employing a combination of the stochastic averaging and the statistical linearization techniques. This leads to a backward Kolmogorov equation which governs the evolution of the survival probability of the oscillator. Next, an approximate solution of this equation is sought by resorting to a Galerkin scheme. Specifically, a convenient set of confluent hypergeometric functions, related to the corresponding linear oscillator with integer-order derivatives, is used as orthogonal basis for this scheme. Applications to the standard viscous linear and to nonlinear (Van der Pol and Duffing) oscillators are presented. Comparisons with pertinent Monte Carlo simulations demonstrate the reliability of the proposed approximate analytical solution.

References

1.
Nutting
,
P. G.
,
1921
, “
A New General Law Deformation
,”
J. Franklin Inst.
,
191
(5), pp.
678
685
.
2.
Gemant
,
A.
,
1936
, “
A Method of Analyzing Experimental Results Obtained by Elasto-Viscous Bodies
,”
Physics
,
7
(
8
), pp.
311
317
.
3.
Gemant
,
A.
,
1938
, “
On Fractional Differentials
,”
Philos. Mag.
,
25
(
168
), pp.
540
549
.
4.
Bosworth
,
R. C. L.
,
1946
, “
A Definition of Plasticity
,”
Nature
,
157
(
3988
), p.
447
.
5.
Scott-Blair
,
G. W.
, and
Gaffyn
,
J. E.
,
1949
, “
An Application of the Theory of Quasi-Properties to the Treatment of Anomalous Strain–Stress Relations
,”
Philos. Mag.
,
40
(
300
), pp.
80
94
.
6.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1986
, “
On the Fractional Calculus Model of Viscoelastic Behavior
,”
J. Rheol.
,
30
(
1
), pp.
133
155
.
7.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1983
, “
A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity
,”
J. Rheol.
,
27
(
3
), pp.
201
210
.
8.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
1997
, “
Applications of Fractional Calculus to Dynamic Problems of Linear and Nonlinear Hereditary Mechanics of Solids
,”
ASME Appl. Mech. Rev.
,
50
(
1
), pp.
15
67
.
9.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
2009
, “
Application of Fractional Calculus for Dynamic Problems of Solid Mechanics: Novel Trends and Recent Results
,”
ASME Appl. Mech. Rev.
,
63
(
1
), p.
010801
.
10.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications
,
Academic Press
,
San Diego, CA
.
11.
Sabatier
,
J.
,
Agrawal
,
O. P.
, and
Tenreiro Machado
,
J. A.
,
2007
,
Advances in Fractional Calculus. Theoretical Developments and Applications in Physics and Engineering
,
Springer
,
Dordrecht, The Netherlands
.
12.
Atanacković
,
T. M.
,
Pilipović
,
S.
,
Stanković
,
B.
, and
Zorica
,
D.
,
2014
,
Fractional Calculus With Applications in Mechanics
,
Wiley
,
London, UK
.
13.
Makris
,
N.
,
Dargush
,
G. F.
, and
Constantinou
,
M. C.
,
1993
, “
Dynamic Analysis of Generalized Viscoelastic Fluids
,”
J. Eng. Mech.
,
119
(
8
), pp.
1663
1679
.
14.
Lee
,
H. H.
, and
Tsai
,
C. S.
,
1994
, “
An Analytical Model for Viscoelastic Dampers for Seismic Mitigation of Structures
,”
Comput. Struct.
,
50
(
1
), pp.
111
121
.
15.
Shen
,
K. L.
, and
Soong
,
T. T.
,
1995
, “
Modeling of Viscoelastic Dampers for Structural Applications
,”
J. Eng. Mech.
,
121
(
6
), pp.
694
701
.
16.
Hwang
,
J. S.
, and
Wang
,
J. C.
,
1998
, “
Seismic Response Prediction of High Damping Rubber Bearings Fractional Derivative Maxwell Model
,”
Eng. Struct.
,
20
(
9
), pp.
849
856
.
17.
Koh
,
C. G.
, and
Kelly
,
L. M.
,
1990
, “
Application of Fractional Derivatives to Seismic Analysis of Base Isolated Models
,”
Earthquake Eng. Struct. Dyn.
,
19
(
2
), pp.
229
241
.
18.
Makris
,
N.
, and
Constantinou
,
M. C.
,
1990
, “
Viscous Dampers: Testing, Modeling and Application in Vibration and Seismic Isolation
,” State University of New York at Buffalo, Buffalo, NY,
Technical Report No. NCEER-90-0028
.
19.
Papoulia
,
K. D.
, and
Kelly
,
J. M.
,
1997
, “
Visco-Hyperelastic Model for Filled Rubbers Used in Vibration Isolation
,”
J. Eng. Mater. Technol.
,
119
(
3
), pp.
292
297
.
20.
Makris
,
N.
, and
Constantinou
,
M. C.
,
1992
, “
Spring-Viscous Damper Systems for Combined Seismic and Vibration Isolation
,”
Earthquake Eng. Struct. Dyn.
,
21
(
8
), pp.
649
664
.
21.
Di Matteo
,
A.
,
Lo Iacono
,
F.
,
Navarra
,
G.
, and
Pirrotta
,
A.
,
2015
, “
Innovative Modeling of Tuned Liquid Column Damper Motion
,”
Commun. Nonlinear Sci. Numer. Simul.
,
23
, pp.
229
244
, http://www.sciencedirect.com/science/article/pii/S1007570414005255.
22.
Huang
,
Z. L.
, and
Jin
,
X. L.
,
2009
, “
Response and Stability of a SDOF Strongly Nonlinear Stochastic System With Light Damping Modeled by a Fractional Derivative
,”
J. Sound Vib.
,
319
, pp.
1121
1135
, http://www.sciencedirect.com/science/article/pii/S0022460X08005737.
23.
Chen
,
L.
, and
Zhu
,
W.
,
2011
, “
Stochastic Jump and Bifurcation of Duffing Oscillator With Fractional Derivative Damping Under Combined Harmonic and White Noise Excitations
,”
Int. J. Non-Linear Mech.
,
46
(
10
), pp.
1324
1329
.
24.
Spanos
,
P. D.
, and
Evangelatos
,
G. I.
,
2010
, “
Response of a Non-Linear System With Restoring Forces Governed by Fractional Derivatives-Time Domain Simulation and Statistical Linearization Solution
,”
Soil Dyn. Earthquake Eng.
,
30
(
9
), pp.
811
821
.
25.
Di Paola
,
M.
,
Failla
,
G.
, and
Pirrotta
,
A.
,
2012
, “
Stationary and Non-Stationary Stochastic Response of Linear Fractional Viscoelastic Systems
,”
Probab. Eng. Mech.
,
28
, pp.
85
90
.
26.
Failla
,
G.
, and
Pirrotta
,
A.
,
2012
, “
On the Stochastic Response of Fractionally-Damped Duffing Oscillator
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
12
), pp.
5131
5142
.
27.
Xu
,
Y.
, and
Li
,
Y. G.
,
2013
, “
Response of Duffing Oscillator With Fractional Damping and Random Phase
,”
Nonlinear Dyn.
,
74
(
3
), pp.
745
753
.
28.
Xu
,
Y.
,
Li
,
Y. G.
, and
Liu
,
D.
,
2014
, “
Response of Fractional Oscillators With Viscoelastic Term Under Random Excitation
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
3
), p.
031015
.
29.
Di Matteo
,
A.
,
Kougioumtzoglou
,
I. A.
,
Pirrotta
,
A.
,
Spanos
,
P. D.
, and
Di Paola
,
M.
,
2014
, “
Stochastic Response Determination of Non-Linear Oscillators With Fractional Derivative Elements Via the Wiener Path Integral
,”
Probab. Eng. Mech.
,
38
, pp.
127
135
.
30.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2014
, “
Nonstationary Stochastic Response Determination of Nonlinear Systems: A Wiener Path Integral Formalism
,”
J. Eng. Mech.
,
140
(
9
), pp.
1
14
.
31.
Spanos
,
P. D.
, and
Kougioumtzoglou
,
I. A.
,
2014
, “
Galerkin Scheme Based Determination of First-Passage Probability of Nonlinear System Response
,”
Struct. Infrastruct. Eng.
,
10
(
10
), pp.
1285
1294
.
32.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2013
, “
Response and First-Passage Statistics of Nonlinear Oscillators Via Numerical Path Integral Approach
,”
ASCE J. Eng. Mech.
,
139
(
9
), pp.
1207
1217
.
33.
Chen
,
L. C.
, and
Zhu
,
W. Q.
,
2009
, “
The First Passage Failure of SDOF Strongly Nonlinear Stochastic System With Fractional Damping Derivative
,”
J. Vib. Control
,
15
(
8
), pp.
1247
1266
.
34.
Chen
,
L. C.
, and
Zhu
,
W. Q.
,
2011
, “
First Passage Failure of SDOF Nonlinear Oscillator With Lightly Fractional Derivative Damping Under Real Noise Excitations
,”
Probab. Eng. Mech.
,
26
(
2
), pp.
208
214
.
35.
Li
,
W.
,
Chen
,
L.
,
Trisovic
,
N.
,
Cvetkovic
,
A.
, and
Zhao
,
J.
,
2015
, “
First Passage of Stochastic Fractional Derivative Systems With Power-Form Restoring Force
,”
Int. J. Non-Linear Mech.
,
71
, pp.
83
88
.
36.
Lin
,
Y. K.
,
1986
, “
Some Observations on the Stochastic Averaging Method
,”
Prob. Eng. Mech.
,
1
(
1
), pp.
23
27
.
37.
Roberts
,
J. B.
, and
Spanos
,
P. D.
,
1986
, “
Stochastic Averaging: An Approximate Method of Solving Random Vibration Problems
,”
Int. J. Non-Linear Mech.
,
21
(
2
), pp.
111
134
.
38.
Roberts
,
J. B.
, and
Spanos
,
P. D.
,
2003
,
Random Vibration and Statistical Linearization
,
Dover Publications
,
New York
.
39.
Iwan
,
W. D.
, and
Spanos
,
P. D.
,
1978
, “
Response Envelope Statistics for Nonlinear Oscillators With Random Excitation
,”
ASME J. Appl. Mech.
,
45
(
1
), pp.
170
174
.
40.
Spanos
,
P. D.
,
1982
, “
Survival Probability of Non-Linear Oscillators Subjected to Broad-Band Random Disturbances
,”
Int. J. Non-Linear Mech.
,
17
, pp.
303
317
.
41.
Spanos
,
P. D.
,
1982
, “
Numerics for Common First-Passage Problem
,”
J. Eng. Mech. Div.
,
108
, pp.
864
882
.
42.
Spanos
,
P. D.
,
1980
, “
On the Computation of the Confluent Hypergeometric Function at Densely Spaced Points
,”
ASME J. Appl. Mech.
,
47
(
3
), pp.
683
685
.
43.
Abramowitz
,
M.
, and
Stegun
,
J.
,
1963
,
Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables
,
Dover Publications
,
New York
.
44.
Stratanovich
,
R. L.
,
1963
,
Topics in the Theory of Random Noise
, Vol.
2
,
Gordon and Breach
,
New York
.
45.
Spanos
,
P. D.
,
1976
, “
Linearization Techniques for Non-Linear Dynamical Systems
,” California Institute of Technology, Pasadena, CA,
Technical Report No. EERL 76-04
.
You do not currently have access to this content.