Three-dimensional transient deformations of clamped flat and doubly curved polycarbonate (PC) panels impacted by a rigid smooth hemispherical-nosed circular cylinder have been numerically studied by the finite-element (FE) method to delineate effects of the panel radius of curvature to its thickness ratio on their penetration resistance. The PC is modeled as thermoelastoviscoplastic with the effective plastic strain rate depending upon the hydrostatic pressure. The effective plastic strain of 3.0 at failure is ascertained by matching for one set of flat panels the computed and the experimental minimum perforation speeds. It is found that a negative curvature (i.e., the center of curvature toward the impactor) of a panel degrades its penetration performance, and the positive curvature enhances it especially for thin panels with thickness/radius of curvature of 0.01. However, the benefit is less evident for panels with the panel thickness/radius of curvature of 0.04 or more. For positively curved thin panels, an elastic hinge forms around the central impacted area during an early stage of deformations, and subsequent deformations occur within this region. No such hinge is observed for flat plates, negatively curved panels of all the thicknesses, and positively curved thick panels. Furthermore, the maximum effective stress induced in regions surrounding the impacted area is less for positively curved panels than that for flat panels. The dominant failure mechanism is found to be the deletion of failed elements due to the effective plastic strain in them exceeding 3.0 rather than due to plug formation. For an example problem, the dependence of the effective plastic strain rate upon the hydrostatic pressure and the consideration of the Coulomb friction at the contact surfaces exhibited minimal effects on the penetration characteristics. This information should be useful for designers of impact-resistant transparent armor, such as an airplane canopy, automobile windshield, and goggles.

References

1.
Radin
,
J.
, and
Goldsmith
,
W.
,
1988
, “
Normal Projectile Penetration and Perforation of Layered Targets
,”
Int. J. Impact Eng.
,
7
(
2
), pp.
229
259
.
2.
Sands
,
J.
,
Patel
,
P.
,
Dehmer
,
P.
, and
Hsieh
,
A.
,
2004
, “
Protecting the Future Force: Transparent Materials Safeguard the Army's Vision
,”
AMPTIAC Q.
,
8
, pp.
28
36
.
3.
Siviour
,
C. R.
,
Walley
,
S. M.
,
Proud
,
W. G.
, and
Field
,
J. E.
,
2005
, “
The High Strain Rate Compressive Behaviour of Polycarbonate and Polyvinylidene Difluoride
,”
Polymer
,
46
(
26
), pp.
12546
12555
.
4.
Moy
,
P.
,
Weerasooriya
,
T.
,
Hsieh
,
A.
, and
Chen
,
W.
,
2003
, “
Strain Rate Response of a Polycarbonate Under Uniaxial Compression
,”
SEM
Conference on Experimental Mechanics
,
T.
Proulx
, ed.,
Society for Experimental Mechanics
,
Bethel, CT
, pp.
2
4
.https://sem.org/wp-content/uploads/2015/12/sem.org-2003-SEM-Ann-Conf-s29p03-Strain-Rate-Response-Polycarbonate-Under-Uniaxial-Compression.pdf
5.
Mulliken
,
A. D.
, and
Boyce
,
M. C.
,
2006
, “
Mechanics of the Rate-Dependent Elastic-Plastic Deformation of Glassy Polymers From Low to High Strain Rates
,”
Int. J. Solids Struct.
,
43
(
5
), pp.
1331
1356
.
6.
Mulliken
,
A. D.
,
2006
,
Mechanics of Amorphous Polymers and Polymer Nanocomposites During High Rate Deformation
,
Massachusetts Institute of Technology
,
Cambridge, MA
, p.
290
.
7.
Richeton
,
J.
,
Ahzi
,
S.
,
Daridon
,
L.
, and
Remond
,
Y.
,
2005
, “
A Formulation of the Cooperative Model for the Yield Stress of Amorphous Polymers for a Wide Range of Strain Rates and Temperatures
,”
Polymer
,
46
(
16
), pp.
6035
6043
.
8.
Richeton
,
J.
,
Schlatter
,
G.
,
Vecchio
,
K. S.
,
Remond
,
Y.
, and
Ahzi
,
S.
,
2005
, “
A Unified Model for Stiffness Modulus of Amorphous Polymers Across Transition Temperatures and Strain Rates
,”
Polymer
,
46
(
19
), pp.
8194
8201
.
9.
Richeton
,
J.
,
Ahzi
,
S.
,
Vecchio
,
K. S.
,
Jiang
,
F. C.
, and
Adharapurapu
,
R. R.
,
2006
, “
Influence of Temperature and Strain Rate on the Mechanical Behavior of Three Amorphous Polymers: Characterization and Modeling of the Compressive Yield Stress
,”
Int. J. Solids Struct.
,
43
(
7–8
), pp.
2318
2335
.
10.
Fleck
,
N. A.
,
Stronge
,
W. J.
, and
Liu
,
J. H.
,
1990
, “
High Strain-Rate Shear Response of Polycarbonate and Polymethyl Methacrylate
,”
Proc. R. Soc. London A
,
429
(
1877
), pp.
459
479
.
11.
Ramakrishnan
,
K. R.
,
2009
, “
Low Velocity Impact Behaviour of Unreinforced Bi-Layer Plastic Laminates
,” Australian Defence Force Academy, Canberra, Australia.
12.
Rittel
,
D.
,
2000
, “
An Investigation of the Heat Generated During Cyclic Loading of Two Glassy Polymers—Part I: Experimental
,”
Mech. Mater.
,
32
(
3
), pp.
131
147
.
13.
Rittel
,
D.
, and
Rabin
,
Y.
,
2000
, “
An Investigation of the Heat Generated During Cyclic Loading of Two Glassy Polymers—Part II: Thermal Analysis
,”
Mech. Mater.
,
32
(
3
), pp.
149
159
.
14.
Rittel
,
D.
,
1999
, “
On the Conversion of Plastic Work to Heat During High Strain Rate Deformation of Glassy Polymers
,”
Mech. Mater.
,
31
(
2
), pp.
131
139
.
15.
Richeton
,
J.
,
Ahzi
,
S.
,
Vecchio
,
K. S.
,
Jiang
,
F. C.
, and
Makradi
,
A.
,
2007
, “
Modeling and Validation of the Large Deformation Inelastic Response of Amorphous Polymers Over a Wide Range of Temperatures and Strain Rates
,”
Int. J. Solids Struct.
,
44
(
24
), pp.
7938
7954
.
16.
Tervoort
,
T.
,
Smit
,
R.
,
Brekelmans
,
W.
, and
Govaert
,
L. E.
,
1997
, “
A Constitutive Equation for the Elasto-Viscoplastic Deformation of Glassy Polymers
,”
Mech. Time-Depend. Mater.
,”
1
(
3
), pp.
269
291
.
17.
Boyce
,
M. C.
,
Parks
,
D. M.
, and
Argon
,
A. S.
,
1988
, “
Large Inelastic Deformation of Glassy-Polymers—1: Rate Dependent Constitutive Model
,”
Mech. Mater.
,
7
(
1
), pp.
15
33
.
18.
Varghese
,
A. G.
, and
Batra
,
R. C.
,
2009
, “
Constitutive Equations for Thermomechanical Deformations of Glassy Polymers
,”
Int. J. Solids Struct.
,
46
(
22–23
), pp.
4079
4094
.
19.
Varghese
,
A. G.
, and
Batra
,
R. C.
,
2011
, “
Strain Localization in Polycarbonates Deformed at High Strain Rates
,”
J. Polym. Eng.
,
31
(6–7), pp.
495
519
.
20.
Safari
,
K. H.
,
Zamani
,
J.
,
Ferreira
,
F. J.
, and
Guedes
,
R. M.
,
2013
, “
Constitutive Modeling of Polycarbonate During High Strain Rate Deformation
,”
Polym. Eng. Sci.
,
53
(
4
), pp.
752
761
.
21.
Chang
,
F. C.
, and
Chu
,
L. H.
,
1992
, “
Coexistence of Ductile, Semi-Ductile, and Brittle Fractures of Polycarbonate
,”
J. Appl. Polym. Sci.
,
44
(
9
), pp.
1615
1623
.
22.
Mills
,
N.
,
1976
, “
The Mechanism of Brittle Fracture in Notched Impact Tests on Polycarbonate
,”
J. Mater. Sci.
,
11
(
2
), pp.
363
375
.
23.
Fraser
,
R.
, and
Ward
,
I.
,
1977
, “
The Impact Fracture Behaviour of Notched Specimens of Polycarbonate
,”
J. Mater. Sci.
,
12
(
3
), pp.
459
468
.
24.
Allen
,
G.
,
Morley
,
D.
, and
Williams
,
T.
,
1973
, “
The Impact Strength of Polycarbonate
,”
J. Mater. Sci.
,
8
(
10
), pp.
1449
1452
.
25.
Rittel
,
D.
,
Levin
,
R.
, and
Maigre
,
H.
,
1977
, “
On Dynamic Crack Initiation in Polycarbonate Under Mixed-Mode Loading
,”
Mech. Res. Commun.
,
24
(
1
), pp.
57
64
.
26.
Plati
,
E.
, and
Williams
,
J.
,
1975
, “
Effect of Temperature on the Impact Fracture Toughness of Polymers
,”
Polymer
,
16
(
12
), pp.
915
920
.
27.
Plati
,
E.
, and
Williams
,
J.
,
1975
, “
The Determination of the Fracture Parameters for Polymers in Impact
,”
Polym. Eng. Sci.
,
15
(
6
), pp.
470
477
.
28.
Adams
,
G. C.
,
Bender
,
R. G.
,
Crouch
,
B. A.
, and
Williams
,
J. G.
,
1990
, “
Impact Fracture-Toughness Tests on Polymers
,”
Polym. Eng. Sci.
,
30
(
4
), pp.
241
248
.
29.
Curran
,
D. R.
,
Shockey
,
D. A.
, and
Seaman
,
L.
,
1973
, “
Dynamic Fracture Criteria for a Polycarbonate
,”
J. Appl. Phys.
,
44
(
9
), pp.
4025
4038
.
30.
Rittel
,
D.
, and
Levin
,
R.
,
1998
, “
Mode-Mixity and Dynamic Failure Mode Transitions in Polycarbonate
,”
Mech. Mater.
,
30
(
3
), pp.
197
216
.
31.
Gunnarsson
,
C. A.
,
Weerasooriya
,
T.
, and
Moy
,
P.
,
2011
, “
Impact Response of PC/PMMA Composites
,”
Dynamic Behavior of Materials
, Vol.
1
,
Springer
,
New York
, pp.
195
209
.
32.
Kelly
,
P. M.
,
2001
, “
Lightweight Transparent Armour Systems for Combat Eyewear
,”
19th International Symposium of Balllistics
, Interlaken, Switzerland, pp.
7
11
.
33.
Dorogoy
,
A.
,
Rittel
,
D.
, and
Brill
,
A.
,
2011
, “
Experimentation and Modeling of Inclined Ballistic Impact in Thick Polycarbonate Plates
,”
Int. J. Impact Eng.
,
38
(
10
), pp.
804
814
.
34.
Shah
,
Q. H.
, and
Abakr
,
Y. A.
,
2008
, “
Effect of Distance From the Support on the Penetration Mechanism of Clamped Circular Polycarbonate Armor Plates
,”
Int. J. Impact Eng.
,
35
(
11
), pp.
1244
1250
.
35.
Shah
,
Q. H.
,
2009
, “
Impact Resistance of a Rectangular Polycarbonate Armor Plate Subjected to Single and Multiple Impacts
,”
Int. J. Impact Eng.
,
36
(
9
), pp.
1128
1135
.
36.
Livingstone
,
I.
,
Richards
,
M.
, and
Clegg
,
R.
,
1999
, “
Numerical and Experimental Investigation of Ballistic Performance of Transparent Armour Systems
,”
Lightweight Armour System Symposium (LASS)
, Shrivenham, UK.
37.
Richards
,
M.
,
Clegg
,
R.
, and
Howlett
,
S.
,
1999
, “
Ballistic Performance Assessment of Glass Laminates Through Experimental and Numerical Investigation
,”
18th International Symposium on Ballistics
, pp.
1123
1130
.
38.
Hazell
,
P. J.
,
Roberson
,
C. J.
, and
Moutinho
,
M.
,
2008
, “
The Design of Mosaic Armour: The Influence of Tile Size on Ballistic Performance
,”
Mater. Design
,
29
(
8
), pp.
1497
1503
.
39.
Antoine
,
G.
, and
Batra
,
R.
,
2015
, “
Low Velocity Impact of Flat and Doubly Curved Polycarbonate Panels
,”
ASME J. Appl. Mech.
,
82
(
4
), p.
041003
.
40.
Khalili
,
S. M. R.
,
Soroush
,
M.
,
Davar
,
A.
, and
Rahmani
,
O.
,
2011
, “
Finite Element Modeling of Low-Velocity Impact on Laminated Composite Plates and Cylindrical Shells
,”
Compos. Struct.
,
93
(
5
), pp.
1363
1375
.
41.
Gunnarsson
,
C. A.
,
Weerasooriya
,
T.
, and
Moy
,
P.
,
2008
, “
Measurement of Transient Full-Field, Out-of-Plane Back Surface Displacements of Polycarbonate During Impact
,”
11th International Congress and Exposition on Experimental and Applied Mechanics
, pp.
1403
1413
.
42.
Gunnarsson
,
C. A.
,
Ziemski
,
B.
,
Weerasooriya
,
T.
, and
Moy
,
P.
,
2009
, “
Deformation and Failure of Polycarbonate During Impact as a Function of Thickness
,”
International Congress and Exposition on Experimental Mechanics and Applied Mechanics
, Society for Experimental Mechanics, Albuequerque, NM, June 1–4, Curran Assoc., Redhook, NY, pp.
1500
1511
.
43.
Batra
,
R.
, and
Peng
,
Z.
,
1996
, “
Development of Shear Bands During the Perforation of a Steel Plate
,”
Comput. Mech.
,
17
(
5
), pp.
326
334
.
44.
Batra
,
R.
, and
Chen
,
X.
,
1994
, “
Effect of Frictional Force and Nose Shape on Axisymmetric Deformations of a Thick Thermoviscoplastic Target
,”
Acta Mech.
,
106
(
1
), pp.
87
105
.
45.
Antoine
,
G. O.
, and
Batra
,
R. C.
,
2015
, “
Sensitivity Analysis of Low-Velocity Impact Response of Laminated Plates
,”
Int. J. Impact Eng.
,
78
(4), pp.
64
80
.
You do not currently have access to this content.