The polymer network of a nanocomposite (NC) hydrogel is physically crosslinked by nanoclay. Recently reported high toughness of nanocomposite (NC) hydrogels highlights the importance of their dissipative properties. The desorption of polymer chains from clay surface may contribute mostly to the hysteresis of NC hydrogels. Here, we proposed a mechanistically motivated pseudoelastic model capable of characterizing the hysteresis of NC hydrogels. The two parameters in the proposed damage variable can be determined by the experiments. We applied the model to the uniaxial tension and reproduced the ideal Mullins effect of NC hydrogels. Furthermore, we considered two nonideal effects: residual deformation and nonideal reloading in multicycle test, using newly proposed damage parameters. A power law with the order of 1/3 is established between the residual fraction of the stretch and the re-adsorption ratio of polymer chains. Finally, we demonstrated the dissipative properties of various NC hydrogels with the model.

References

References
1.
Malhotra
,
H.
,
1956
, “
The Effect of Temperature on the Compressive Strength of Concrete
,”
Mag. Concr. Res.
,
8
(
23
), pp.
85
94
.
2.
Lion
,
A.
,
1996
, “
A Constitutive Model for Carbon Black Filled Rubber: Experimental Investigations and Mathematical Representation
,”
Continuum Mech. Thermodyn.
,
8
(
3
), pp.
153
169
.
3.
Deve
,
H.
,
1999
, “
Effect of Fiber Spatial Arrangement on the Transverse Strength of Titanium Matrix Composites
,”
Metall. Mater. Trans. A
,
30
(
9
), pp.
2513
2522
.
4.
Poletti
,
C.
,
Balog
,
M.
,
Schubert
,
T.
,
Liedtke
,
V.
, and
Edtmaier
,
C.
,
2008
, “
Production of Titanium Matrix Composites Reinforced With SiC Particles
,”
Compos. Sci. Technol.
,
68
(
9
), pp.
2171
2177
.
5.
Haraguchi
,
K.
, and
Takehisa
,
T.
,
2002
, “
Nanocomposite Hydrogels: A Unique Organic-Inorganic Network Structure With Extraordinary Mechanical, Optical, and Swelling/De-Swelling Properties
,”
Adv. Mater.
,
14
(
16
), p.
1120
.
6.
Seitz
,
M. E.
,
Martina
,
D.
,
Baumberger
,
T.
,
Krishnan
,
V. R.
,
Hui
,
C.-Y.
, and
Shull
,
K. R.
,
2009
, “
Fracture and Large Strain Behavior of Self-Assembled Triblock Copolymer Gels
,”
Soft Matter
,
5
(
2
), pp.
447
456
.
7.
Shibayama
,
M.
,
Karino
,
T.
,
Miyazaki
,
S.
,
Okabe
,
S.
,
Takehisa
,
T.
, and
Haraguchi
,
K.
,
2005
, “
Small-Angle Neutron Scattering Study on Uniaxially Stretched Poly (N-Isopropylacrylamide)-Clay Nanocomposite Gels
,”
Macromolecules
,
38
(
26
), pp.
10772
10781
.
8.
Nishida
,
T.
,
Endo
,
H.
,
Osaka
,
N.
,
Li
,
H.-J.
,
Haraguchi
,
K.
, and
Shibayama
,
M.
,
2009
, “
Deformation Mechanism of Nanocomposite Gels Studied by Contrast Variation Small-Angle Neutron Scattering
,”
Phys. Rev. E
,
80
(
3
), p.
030801
.
9.
Nishida
,
T.
,
Obayashi
,
A.
,
Haraguchi
,
K.
, and
Shibayama
,
M.
,
2012
, “
Stress Relaxation and Hysteresis of Nanocomposite Gel Investigated by SAXS and SANS Measurement
,”
Polymer
,
53
(
20
), pp.
4533
4538
.
10.
Haraguchi
,
K.
,
Uyama
,
K.
, and
Tanimoto
,
H.
,
2011
, “
Self-Healing in Nanocomposite Hydrogels
,”
Macromol. Rapid Commun.
,
32
(
16
), pp.
1253
1258
.
11.
Murata
,
K.
, and
Haraguchi
,
K.
,
2007
, “
Optical Anisotropy in Polymer–Clay Nanocomposite Hydrogel and Its Change on Uniaxial Deformation
,”
J. Mater. Chem.
,
17
(
32
), pp.
3385
3388
.
12.
Haraguchi
,
K.
,
Takehisa
,
T.
, and
Ebato
,
M.
,
2006
, “
Control of Cell Cultivation and Cell Sheet Detachment on the Surface of Polymer/Clay Nanocomposite Hydrogels
,”
Biomacromolecules
,
7
(
11
), pp.
3267
3275
.
13.
Tang
,
J.
,
Yu
,
Z.
,
Sun
,
Y.
,
Pei
,
Y.
, and
Fang
,
D.
,
2013
, “
A Bulge-Induced Dehydration Failure Mode of Nanocomposite Hydrogel
,”
Appl. Phys. Lett.
,
103
(
16
), p.
161903
.
14.
Klein
,
A.
,
Whitten
,
P. G.
,
Resch
,
K.
, and
Pinter
,
G.
,
2015
, “
Nanocomposite Hydrogels: Fracture Toughness and Energy Dissipation Mechanisms
,”
J. Polym. Sci. Part B: Polym. Phys.
,
53
(
24
), pp.
1763
1773
.
15.
Baumberger
,
T.
,
Caroli
,
C.
, and
Martina
,
D.
,
2006
, “
Fracture of a Biopolymer Gel as a Viscoplastic Disentanglement Process
,”
Eur. Phys. J. E
,
21
(
1
), pp.
81
89
.
16.
Baumberger
,
T.
,
Caroli
,
C.
, and
Martina
,
D.
,
2006
, “
Solvent Control of Crack Dynamics in a Reversible Hydrogel
,”
Nat. Mater.
,
5
(
7
), pp.
552
555
.
17.
Lin
,
W.-C.
,
Fan
,
W.
,
Marcellan
,
A.
,
Hourdet
,
D.
, and
Creton
,
C.
,
2010
, “
Large Strain and Fracture Properties Of Poly (Dimethylacrylamide)/Silica Hybrid Hydrogels
,”
Macromolecules
,
43
(
5
), pp.
2554
2563
.
18.
Sun
,
J.-Y.
,
Zhao
,
X.
,
Illeperuma
,
W. R.
,
Chaudhuri
,
O.
,
Oh
,
K. H.
,
Mooney
,
D. J.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2012
, “
Highly Stretchable and Tough Hydrogels
,”
Nature
,
489
(
7414
), pp.
133
136
.
19.
Zhao
,
X.
,
2014
, “
Multi-Scale Multi-Mechanism Design of Tough Hydrogels: Building Dissipation Into Stretchy Networks
,”
Soft Matter
,
10
(
5
), pp.
672
687
.
20.
Tang
,
J.
,
Xu
,
G.
,
Sun
,
Y.
,
Pei
,
Y.
, and
Fang
,
D.
,
2014
, “
Dissipative Properties and Chain Evolution of Highly Strained Nanocomposite Hydrogel
,”
J. Appl. Phys.
,
116
(
24
), p.
244901
.
21.
Gong
,
J. P.
,
2010
, “
Why are Double Network Hydrogels so Tough?
,”
Soft Matter
,
6
(
12
), pp.
2583
2590
.
22.
Xiong
,
L.
,
Hu
,
X.
,
Liu
,
X.
, and
Tong
,
Z.
,
2008
, “
Network Chain Density and Relaxation of In Situ Synthesized Polyacrylamide/Hectorite Clay Nanocomposite Hydrogels With Ultrahigh Tensibility
,”
Polymer
,
49
(
23
), pp.
5064
5071
.
23.
Rose
,
S.
,
Dizeux
,
A.
,
Narita
,
T.
,
Hourdet
,
D.
, and
Marcellan
,
A.
,
2013
, “
Time Dependence of Dissipative and Recovery Processes in Nanohybrid Hydrogels
,”
Macromolecules
,
46
(
10
), pp.
4095
4104
.
24.
Zhao
,
X.
,
2012
, “
A Theory for Large Deformation and Damage of Interpenetrating Polymer Networks
,”
J. Mech. Phys. Solids
,
60
(
2
), pp.
319
332
.
25.
Wang
,
X.
, and
Hong
,
W.
,
2011
, “
Pseudo-Elasticity of a Double Network Gel
,”
Soft Matter
,
7
(
18
), pp.
8576
8581
.
26.
Liu
,
Y.
,
Zhang
,
H.
, and
Zheng
,
Y.
,
2016
, “
A Micromechanically Based Constitutive Model for the Inelastic and Swelling Behaviors in Double Network Hydrogels
,”
ASME J. Appl. Mech.
,
83
(
2
), p.
021008
.
27.
Hui
,
C.-Y.
, and
Long
,
R.
,
2012
, “
A Constitutive Model for the Large Deformation of a Self-Healing Gel
,”
Soft Matter
,
8
(
31
), pp.
8209
8216
.
28.
Long
,
R.
,
Mayumi
,
K.
,
Creton
,
C.
,
Narita
,
T.
, and
Hui
,
C.-Y.
,
2014
, “
Time Dependent Behavior of a Dual Cross-Link Self-Healing Gel: Theory and Experiments
,”
Macromolecules
,
47
(
20
), pp.
7243
7250
.
29.
Diani
,
J.
,
Fayolle
,
B.
, and
Gilormini
,
P.
,
2009
, “
A Review on the Mullins Effect
,”
Eur. Polym. J.
,
45
(
3
), pp.
601
612
.
30.
Ogden
,
R.
, and
Roxburgh
,
D.
,
1999
, “
A Pseudo–Elastic Model for the Mullins Effect in Filled Rubber
,”
Proc. R. Soc. London A: Math., Phys. Eng. Sci.
,
445
(
1988
), pp.
2861
2877
.
31.
Chagnon
,
G.
,
Verron
,
E.
,
Gornet
,
L.
,
Marckmann
,
G.
, and
Charrier
,
P.
,
2004
, “
On the Relevance of Continuum Damage Mechanics as Applied to the Mullins Effect in Elastomers
,”
J. Mech. Phys. Solids
,
52
(
7
), pp.
1627
1650
.
32.
Bergström
,
J.
, and
Boyce
,
M.
,
1998
, “
Constitutive Modeling of the Large Strain Time-Dependent Behavior of Elastomers
,”
J. Mech. Phys. Solids
,
46
(
5
), pp.
931
954
.
33.
Marckmann
,
G.
,
Verron
,
E.
,
Gornet
,
L.
,
Chagnon
,
G.
,
Charrier
,
P.
, and
Fort
,
P.
,
2002
, “
A Theory of Network Alteration for the Mullins Effect
,”
J. Mech. Phys. Solids
,
50
(
9
), pp.
2011
2028
.
34.
De Tommasi
,
D.
,
Puglisi
,
G.
, and
Saccomandi
,
G.
,
2006
, “
A Micromechanics-Based Model for the Mullins Effect
,”
J. Rheol.
,
50
(
4
), pp.
495
512
.
35.
Haddow
,
J.
, and
Wegner
,
J.
,
1998
, “
Inflation of a Thick-Walled Shell Which Exhibits Stress Softening
,”
ASME J. Appl. Mech.
,
65
(
1
), pp.
46
50
.
36.
Kilian
,
H.
,
Strauss
,
M.
, and
Hamm
,
W.
,
1994
, “
Universal Properties in Filler-Loaded Rubbers
,”
Rubber Chem. Technol.
,
67
(
1
), pp.
1
16
.
37.
Kazakevičiūtė-Makovska
,
R.
,
2007
, “
Experimentally Determined Properties of Softening Functions in Pseudo-Elastic Models of the Mullins Effect
,”
Int. J. Solids Struct.
,
44
(
11
), pp.
4145
4157
.
38.
Li
,
J.
,
Suo
,
Z.
, and
Vlassak
,
J. J.
,
2014
, “
A Model of Ideal Elastomeric Gels for Polyelectrolyte Gels
,”
Soft Matter
,
10
(
15
), pp.
2582
2590
.
39.
Webber
,
R. E.
,
Creton
,
C.
,
Brown
,
H. R.
, and
Gong
,
J. P.
,
2007
, “
Large Strain Hysteresis and Mullins Effect of Tough Double-Network Hydrogels
,”
Macromol.
,
40
(
8
), pp.
2919
2927
.
40.
Dion
,
M.
,
Rydberg
,
H.
,
Schröder
,
E.
,
Langreth
,
D. C.
, and
Lundqvist
,
B. I.
,
2004
, “
Van der Waals Density Functional for General Geometries
,”
Phys. Rev. Lett.
,
92
(
24
), p.
246401
.
41.
Lin
,
S.
,
Zhou
,
Y.
, and
Zhao
,
X.
,
2014
, “
Designing Extremely Resilient and Tough Hydrogels Via Delayed Dissipation
,”
Extreme Mech. Lett.
,
1
, pp.
70
75
.
42.
Haraguchi
,
K.
, and
Li
,
H.-J.
,
2006
, “
Mechanical Properties and Structure of Polymer-Clay Nanocomposite Gels With High Clay Content
,”
Macromolecules
,
39
(
5
), pp.
1898
1905
.
43.
Dorfmann
,
A.
, and
Ogden
,
R. W.
,
2004
, “
A Constitutive Model for the Mullins Effect With Permanent Set in Particle-Reinforced Rubber
,”
Int. J. Solids Struct.
,
41
(
7
), pp.
1855
1878
.
44.
Tobolsky
,
A.
,
Prettyman
,
I.
, and
Dillon
,
J.
,
1944
, “
Stress Relaxation of Natural and Synthetic Rubber Stocks
,”
J. Appl. Phys.
,
15
(
4
), pp.
380
395
.
45.
Dorfmann
,
A.
, and
Ogden
,
R.
,
2003
, “
A Pseudo-Elastic Model for Loading, Partial Unloading and Reloading of Particle-Reinforced Rubber
,”
Int. J. Solids Struct.
,
40
(
11
), pp.
2699
2714
.
46.
Zhu
,
M.
,
Liu
,
Y.
,
Sun
,
B.
,
Zhang
,
W.
,
Liu
,
X.
,
Yu
,
H.
,
Zhang
,
Y.
,
Kuckling
,
D.
, and
Adler
,
H. J. P.
,
2006
, “
A Novel Highly Resilient Nanocomposite Hydrogel With Low Hysteresis and Ultrahigh Elongation
,”
Macromol. Rapid Commun.
,
27
(
13
), pp.
1023
1028
.
47.
Carlsson
,
L.
,
Rose
,
S.
,
Hourdet
,
D.
, and
Marcellan
,
A.
,
2010
, “
Nano-Hybrid Self-Crosslinked PDMA/Silica Hydrogels
,”
Soft Matter
,
6
(
15
), pp.
3619
3631
.
48.
Beatty
,
M. F.
, and
Krishnaswamy
,
S.
,
2000
, “
A Theory of Stress-Softening in Incompressible Isotropic Materials
,”
J. Mech. Phys. Solids
,
48
(
9
), pp.
1931
1965
.
49.
Fukahori
,
Y.
,
2005
, “
New Progress in the Theory and Model of Carbon Black Reinforcement of Elastomers
,”
J. Appl. Polym. Sci.
,
95
(
1
), pp.
60
67
.
You do not currently have access to this content.