A wide range of engineered and natural composites exhibit a layered architecture whereby individual building blocks are assembled layer by layer using cohesive interfaces. We present a novel mechanism for evolving acoustic band gap structure in a model system of these composites through patterning the microstructure in a way that triggers nonplanar interfacial deformations between the layers as they are stretched. Through the controlled deformation and growth of interlayer channels under macroscopic tension, we observe the emergence of multiple wide band gaps due to Bragg diffraction and local resonance. We describe these phenomena in details for three example microstructures and discuss the implications of our approach for harnessing controlled deformation in modulating band gap properties of composite materials.

References

References
1.
Espinosa
,
H. D.
,
Rim
,
J. E.
,
Barthelat
,
F.
, and
Buehler
,
M. J.
,
2009
, “
Merger of Structure and Material in Nacre and Bone—Perspectives on de Novo Biomimetic Materials
,”
Prog. Mater. Sci.
,
54
(
8
), pp.
1059
1100
.
2.
Luz
,
G. M.
, and
Mano
,
J. F.
,
2010
, “
Mineralized Structures in Nature: Examples and Inspirations for the Design of New Composite Materials and Biomaterials
,”
Compos. Sci. Technol.
,
70
(
13
), pp.
1777
1788
.
3.
Dunlop
,
J. W. C.
, and
Fratzl
,
P.
,
2010
, “
Biological Composites
,”
Annu. Rev. Mater. Res.
,
40
(
1
), pp.
1
24
.
4.
Ritchie
,
R. O.
,
2011
, “
The Conflicts Between Strength and Toughness
,”
Nat. Mater.
,
10
(
11
), pp.
817
822
.
5.
Weiner
,
S.
, and
Wagner
,
H. D.
,
1998
, “
The Material Bone: Structure-Mechanical Function Relations
,”
Annu. Rev. Mater. Sci.
,
28
(
1
), pp.
271
298
.
6.
Jäger
,
I.
, and
Fratzl
,
P.
,
2000
, “
Mineralized Collagen Fibrils: A Mechanical Model With a Staggered Arrangement of Mineral Particles
,”
Biophys. J.
,
79
(
4
), pp.
1737
1746
.
7.
Elbanna
,
A. E.
, and
Carlson
,
J. M.
,
2013
, “
Dynamics of Polymer Molecules With Sacrificial Bond and Hidden Length Systems: Towards a Physically-Based Mesoscopic Constitutive Law
,”
PLoS One
,
8
(
4
), p.
e56118
.
8.
Lieou
,
C. K. C.
,
Elbanna
,
A. E.
, and
Carlson
,
J. M.
,
2013
, “
Sacrificial Bonds and Hidden Length in Biomaterials: A Kinetic Constitutive Description of Strength and Toughness in Bone
,”
Phys. Rev. E: Stat. Nonlinear, Soft Matter Phys.
,
88
, p.
012703
.
9.
Wang
,
W.
, and
Elbanna
,
A.
,
2014
, “
Crack Propagation in Bone on the Scale of Mineralized Collagen Fibrils: Role of Polymers With Sacrificial Bonds and Hidden Length
,”
Bone
,
68
, pp.
20
31
.
10.
Fantner
,
G. E.
,
Hassenkam
,
T.
,
Kindt
,
J. H.
,
Weaver
,
J. C.
,
Birkedal
,
H.
,
Pechenik
,
L.
,
Cutronni
,
J. A.
,
Cidade
,
G. A. G.
,
Stucky
,
G. D.
,
Morse
,
D. E.
, and
Hansma
,
P. K.
,
2005
, “
Sacrificial Bonds and Hidden Length Dissipate Energy as Mineralized Fibrils Separate During Bone Fracture
,”
Nat. Mater.
,
4
(
8
), pp.
612
616
.
11.
Zhang
,
N.
,
Yang
,
S.
,
Xiong
,
L.
,
Hong
,
Y.
, and
Chen
,
Y.
,
2016
, “
Nanoscale Toughening Mechanism of Nacre Tablet
,”
J. Mech. Behav. Biomed. Mater.
,
53
, pp.
200
209
.
12.
Li
,
B.-W.
,
Zhao
,
H.-P.
,
Qin
,
Q.-H.
,
Feng
,
X.-Q.
, and
Yu
,
S.-W.
,
2012
, “
Numerical Study on the Effects of Hierarchical Wavy Interface Morphology on Fracture Toughness
,”
Comput. Mater. Sci.
,
57
, pp.
14
22
.
13.
Chan
,
E. P.
,
Smith
,
E. J.
,
Hayward
,
R. C.
, and
Crosby
,
A. J.
,
2008
, “
Surface Wrinkles for Smart Adhesion
,”
Adv. Mater.
,
20
(
4
), pp.
711
716
.
14.
Janarthanan
,
V.
,
Garrett
,
P. D.
,
Stein
,
R. S.
, and
Srinivasarao
,
M.
,
1997
, “
Adhesion Enhancement in Immiscible Polymer Bilayer Using Oriented Macroscopic Roughness
,”
Polymer (Guildf)
,
38
(
1
), pp.
105
111
.
15.
Davies
,
B.
,
King
,
A.
,
Newman
,
P.
,
Minett
,
A.
,
Dunstan
,
C. R.
, and
Zreiqat
,
H.
,
2014
, “
Hypothesis: Bones Toughness Arises From the Supression of Elastic Waves
,”
Sci. Rep.
,
4
, p.
7538
.
16.
Maldovan
,
M.
, and
Thomas
,
E. L.
,
2008
,
Periodic Materials and Interference Lithography
,
Wiley-VCH Verlag GmbH
,
New York
.
17.
Lee
,
J.-H.
,
Singer
,
J. P.
, and
Thomas
,
E. L.
,
2012
, “
Micro-/Nanostructured Mechanical Metamaterials
,”
Adv. Mater.
,
24
(
36
), pp.
4782
810
.
18.
Aly
,
A. H.
, and
Mehaney
,
A.
,
2012
, “
Enhancement of Phononic Band Gaps in Ternary/Binary Structure
,”
Phys. B Condens. Matter
,
407
(
21
), pp.
4262
4268
.
19.
Maldovan
,
M.
,
2013
, “
Sound and Heat Revolutions in Phononics
,”
Nature
,
503
(
7475
), pp.
209
217
.
20.
Sigalas
,
M. M.
, and
Economou
,
E. N.
,
1995
, “
Comment on Acoustic Band Structure of Periodic Elastic Composites
,”
Phys. Rev. Lett.
,
75
(
19
), p.
3580
.
21.
Goffaux
,
C.
, and
Sánchez-Dehesa
,
J.
,
2003
, “
Two-Dimensional Phononic Crystals Studied Using a Variational Method: Application to Lattices of Locally Resonant Materials
,”
Phys. Rev. B
,
67
(
14
), p.
144301
.
22.
Achaoui
,
Y.
,
Khelif
,
A.
,
Benchabane
,
S.
,
Robert
,
L.
, and
Laude
,
V.
,
2011
, “
Experimental Observation of Locally-Resonant and Bragg Band Gaps for Surface Guided Waves in a Phononic Crystal of Pillars
,”
Phys. Rev. B
,
83
(
10
), p.
104201
.
23.
Chen
,
Y.
, and
Wang
,
L.
,
2014
, “
Tunable Band Gaps in Bio-Inspired Periodic Composites With Nacre-Like Microstructure
,”
J. Appl. Phys.
,
116
(
6
), p.
63506
.
24.
Goffaux
,
C.
, and
Vigneron
,
J. P.
,
2001
, “
Theoretical Study of a Tunable Phononic Band Gap System
,”
Phys. Rev. B
,
64
(
7
), p.
75118
.
25.
Vatanabe
,
S. L.
,
Paulino
,
G. H.
, and
Silva
,
E. C. N.
,
2014
, “
Maximizing Phononic Band Gaps in Piezocomposite Materials by Means of Topology Optimization
,”
J. Acoust. Soc. Am.
,
136
(
2
), pp.
494
501
.
26.
Sigmund
,
O.
, and
Jensen
,
J. S.
,
2003
, “
Systematic Design of Phononic Band-Gap Materials and Structures by Topology Optimization
,”
Philos. Trans. A. Math. Phys. Eng. Sci.
,
361
(
1806
), pp.
1001
1019
.
27.
Bertoldi
,
K.
, and
Boyce
,
M. C.
,
2008
, “
Wave Propagation and Instabilities in Monolithic and Periodically Structured Elastomeric Materials Undergoing Large Deformations
,”
Phys. Rev. B: Condens. Matter Mater. Phys.
,
78
(18), p.
184107
.
28.
Rudykh
,
S.
, and
Boyce
,
M. C.
,
2014
, “
Transforming Wave Propagation in Layered Media Via Instability-Induced Interfacial Wrinkling
,”
Phys. Rev. Lett.
,
112
, pp.
1
5
.
29.
Bayat
,
A.
, and
Gordaninejad
,
F.
,
2015
, “
Switching Band-Gaps of a Phononic Crystal Slab by Surface Instability
,”
Smart Mater. Struct.
,
24
(
7
), p.
75009
.
30.
Liu
,
Z.
,
2000
, “
Locally Resonant Sonic Materials
,”
Science
,
289
(
5485
), pp.
1734
1736
.
31.
Wang
,
G.
,
Wen
,
X.
,
Wen
,
J.
,
Shao
,
L.
, and
Liu
,
Y.
,
2004
, “
Two-Dimensional Locally Resonant Phononic Crystals With Binary Structures
,”
Phys. Rev. Lett.
,
93
(
15
), p.
154302
.
32.
Wang
,
X.-P.
,
Jiang
,
P.
,
Chen
,
T.-N.
, and
Zhu
,
J.
,
2015
, “
Tuning Characteristic of Band Gap and Waveguide in a Multi-Stub Locally Resonant Phononic Crystal Plate
,”
AIP Adv.
,
5
(
10
), p.
107141
.
33.
Kushwaha
,
M. S.
,
1997
, “
Stop-Bands for Periodic Metallic Rods: Sculptures That can Filter the Noise
,”
Appl. Phys. Lett.
,
70
(
24
), pp.
3218
3220
.
34.
Khelif
,
A.
,
Deymier
,
P. A.
,
Djafari-Rouhani
,
B.
,
Vasseur
,
J. O.
, and
Dobrzynski
,
L.
,
2003
, “
Two-Dimensional Phononic Crystal With Tunable Narrow Pass Band: Application to a Waveguide With Selective Frequency
,”
J. Appl. Phys.
,
94
(
3
), p.
1308
.
35.
Vasseur
,
J. O.
,
Deymier
,
P. A.
,
Khelif
,
A.
,
Lambin
,
P.
,
Djafari-Rouhani
,
B.
,
Akjouj
,
A.
,
Dobrzynski
,
L.
,
Fettouhi
,
N.
, and
Zemmouri
,
J.
,
2002
, “
Phononic Crystal With Low Filling Fraction and Absolute Acoustic Band Gap in the Audible Frequency Range: A Theoretical and Experimental Study
,”
Phys. Rev. E. Stat. Nonlinear Soft Matter Phys.
,
65
(
5
), p.
56608
.
36.
Kushwaha
,
M. S.
,
Halevi
,
P.
,
Dobrzynski
,
L.
, and
Djafari-Rouhani
,
B.
,
1993
, “
Acoustic Band Structure of Periodic Elastic Composites
,”
Phys. Rev. Lett.
,
71
(
13
), pp.
2022
2025
.
37.
Chen
,
Y.
, and
Wang
,
L.
,
2015
, “
Multiband Wave Filtering and Waveguiding in Bio-Inspired Hierarchical Composites
,”
Extrem. Mech. Lett.
,
5
, pp.
18
24
.
38.
Khelif
,
A.
,
Choujaa
,
A.
,
Benchabane
,
S.
,
Djafari-Rouhani
,
B.
, and
Laude
,
V.
,
2004
, “
Guiding and Bending of Acoustic Waves in Highly Confined Phononic Crystal Waveguides
,”
Appl. Phys. Lett.
,
84
(
22
), p.
4400
.
39.
Chen
,
Q.
, and
Elbanna
,
A.
,
2015
, “
Tension-Induced Tunable Corrugation in Two-Phase Soft Composites: Mechanisms and Implications
,”
Extrem. Mech. Lett.
,
4
, pp.
26
37
.
40.
Yang
,
Z.
,
Chen
,
Q.
,
Elbanna
,
A. E.
, and
Kim
,
S.
,
2016
, “
Transfer Printing Enabled Soft Composite Films for Tunable Surface Topography
,”
Extrem. Mech. Lett.
,
7
, pp.
145
153
.
41.
Krattiger
,
D.
, and
Hussein
,
M. I.
,
2014
, “
Bloch Mode Synthesis: Ultrafast Methodology for Elastic Band-Structure Calculations
,”
Phys. Rev. E—Stat. Nonlinear, Soft Matter Phys.
,
90
, p.
063306
.
42.
Bertoldi
,
K.
, and
Boyce
,
M. C.
,
2008
, “
Mechanically Triggered Transformations of Phononic Band Gaps in Periodic Elastomeric Structures
,”
Phys. Rev. B
,
77
(
5
), p.
52105
.
43.
Shen
,
Z. L.
,
Dodge
,
M. R.
,
Kahn
,
H.
,
Ballarini
,
R.
, and
Eppell
,
S. J.
,
2008
, “
Stress-Strain Experiments on Individual Collagen Fibrils
,”
Biophys. J.
,
95
(
8
), pp.
3956
3963
.
44.
Ahn
,
B. K.
,
Lee
,
D. W.
,
Israelachvili
,
J. N.
, and
Waite
,
J. H.
,
2014
, “
Surface-Initiated Self-Healing of Polymers in Aqueous Media
,”
Nat. Mater.
,
13
(
9
), pp.
867
872
.
45.
Vasseur
,
J. O.
,
Deymier
,
P. A.
,
Djafari-Rouhani
,
B.
,
Pennec
,
Y.
, and
Hladky-Hennion
,
A.-C.
,
2008
, “
Absolute Forbidden Bands and Waveguiding in Two-Dimensional Phononic Crystal Plates
,”
Phys. Rev. B
,
77
(
8
), p.
85415
.
46.
Tang
,
Y.
,
Lin
,
G.
,
Han
,
L.
,
Qiu
,
S.
,
Yang
,
S.
, and
Yin
,
J.
,
2015
, “
Design of Hierarchically Cut Hinges for Highly Stretchable and Reconfigurable Metamaterials With Enhanced Strength
,”
Adv. Mater.
,
27
(
44
), pp.
7181
7190
.
47.
Treloar
,
L. R. G.
,
1948
, “
Stresses and Birefringence in Rubber subjected to General Homogeneous Strain
,”
Proc. Phys. Soc.
,
60
(
2
), pp.
135
144
.
48.
Bower
,
A. F.
, “
Constitutive Laws—3.5 Hyperelasticity
,”
Applied Mechanics of Solids
,
CRC Press
,
Boca Raton, FL
, Chap. 3.
49.
Swaminathan
,
S.
,
Pagano
,
N. J.
, and
Ghosh
,
S.
,
2006
, “
Analysis of Interfacial Debonding in Three-Dimensional Composite Microstructures
,”
ASME J. Eng. Mater. Technol.
,
128
(
1
), pp.
96
106
.
50.
Lee
,
S. C.
, and
Kim
,
K. T.
,
2008
, “
A Densification Model for Powder Materials Under Cold Isostatic Pressing—Effect of Adhesion and Friction of Rubber Molds
,”
Mater. Sci. Eng. A
,
498
(1–2), pp.
359
368
.
51.
Brillouin
,
L.
,
1953
,
Wave Propagation in Periodic Structures; Electric Filters and Crystal Lattices
,
Dover Publications
,
Mineola, NY
.
52.
Aberg
,
M.
,
1997
, “
The Usage of Standard Finite Element Codes for Computation of Dispersion Relations in Materials With Periodic Microstructure
,”
J. Acoust. Soc. Am.
,
102
(
4
), p.
2007
.
53.
Hussein
,
M. I.
,
2009
, “
Reduced Bloch Mode Expansion for Periodic Media Band Structure Calculations
,”
Proc. Math. Phys. Eng. Sci.
,
465
(
2109
), pp.
2825
2848
.
You do not currently have access to this content.