In this paper, we present an analytical solution to the axisymmetric elasticity problem for an inhomogeneous solid cylinder subjected to external force loadings, which vary within the axial coordinate. The material properties of the cylinder are assumed to be arbitrary functions of the radial coordinate. By making use of the direct integration method, the problem is reduced to coupled integral equations for the shearing stress and the total stress (given by the superposition of the normal ones). By making use of the resolvent-kernel solution, the latter equations were uncoupled and then solved in a closed analytical form. On this basis, the effect of variable material moduli in the stress distribution has been examined with special attention given to the negative Poisson's ratio.

References

References
1.
Obata
,
Y.
, and
Noda
,
N.
,
1994
, “
Steady Thermal Stresses in a Hollow Circular Cylinder and a Hollow Sphere of a Functionally Gradient Material
,”
J. Therm. Stresses
,
17
(
3
), pp.
471
487
.
2.
Kushnir
,
R. M.
, and
Popovych
,
V. S.
,
2006
, “
Stressed State of a Thermosensitive Plate in a Central-Symmetric Temperature Field
,”
Mater. Sci.
,
42
(
2
), pp.
145
154
.
3.
Guo
,
L.
, and
Noda
,
N.
,
2014
, “
Investigation Methods for Thermal Shock Crack Problems of Functionally-Graded Materials—Part I: Analytical Method
,”
J. Therm. Stresses
,
37
(
3
), pp.
292
324
.
4.
Kushnir
,
R. M.
,
Protsyuk
,
B. V.
, and
Synyuta
,
V. M.
,
2004
, “
Quasistatic Temperature Stresses in a Multilayer Thermally Sensitive Cylinder
,”
Mater. Sci.
,
40
(
4
), pp.
433
445
.
5.
Zimmerman
,
R. W.
, and
Lutz
,
M. P.
,
1999
, “
Thermal Stresses and Thermal Expansion in a Uniformly Heated Functionally Graded Cylinder
,”
J. Therm. Stresses
,
22
, pp.
177
188
.
6.
Jabbari
,
M.
,
Meshkini
,
M.
, and
Eslami
,
M. R.
,
2016
, “
Mechanical and Thermal Stresses in FGPPM Hollow Cylinder Due to Radially Symmetric Loads
,”
ASME J. Pressure Vessel Technol.
,
138
(
1
), p.
011207
.
7.
Zhang
,
X.
, and
Hasebe
,
N.
,
1999
, “
Elasticity Solution for a Radially Nonhomogeneous Hollow Circular Cylinder
,”
ASME J. Appl. Mech.
,
66
(
3
), pp.
598
606
.
8.
Woodward
,
B.
, and
Kashtalyan
,
M.
,
2015
, “
A Piecewise Exponential Model for Three-Dimensional Analysis of Sandwich Panels With Arbitrarily Graded Core
,”
Int. J. Solids Struct.
,
75–76
(
1
), pp.
188
198
.
9.
Tokovyy
,
Y. V.
,
Kalynyak
,
B. M.
, and
Ma
,
C.-C.
,
2014
, “
Nonhomogeneous Solids: Integral Equations Approach
,”
Encyclopedia of Thermal Stresses
, Vol.
7
,
R. B.
Hetnarski
, ed.,
Springer
,
Dordrecht, The Netherlands
, pp.
3350
3356
.
10.
Krenev
,
L. I.
,
Tokovyy
,
Y. V.
,
Aizikovich
,
S. M.
,
Seleznev
,
N. M.
, and
Gorokhov
,
S. V.
,
2016
, “
A Numerical-Analytical Solution to the Mixed Boundary-Value Problem of the Heat-Conduction Theory for Arbitrarily Inhomogeneous Coatings
,”
Int. J. Therm. Sci.
,
107
, pp.
56
65
.
11.
Jha
,
D. K.
,
Kant
,
T.
, and
Singh
,
R. K.
,
2013
, “
A Critical Review of Recent Research on Functionally Graded Plates
,”
Compos. Struct.
,
96
, pp.
883
849
.
12.
Soldatos
,
K. P.
,
1994
, “
Review of Three Dimensional Dynamic Analyses of Circular Cylinders and Cylindrical Shells
,”
ASME Appl. Mech. Rev.
,
47
(
10
), pp.
501
516
.
13.
Tokovyy
,
Y. V.
, and
Ma
,
C.-C.
,
2008
, “
Thermal Stresses in Anisotropic and Radially Inhomogeneous Annular Domains
,”
J. Therm. Stresses
,
31
(
9
), pp.
892
913
.
14.
Jabbari
,
M.
,
Bahtui
,
A.
, and
Eslami
,
M. R.
,
2006
, “
Axisymmetric Mechanical and Thermal Stresses in Thick Long FGM Cylinders
,”
J. Therm. Stresses
,
29
(
7
), pp.
643
663
.
15.
Jabbari
,
M.
,
Mohazzab
,
A. H.
,
Bahtui
,
A.
, and
Eslami
,
M. R.
,
2007
, “
Analytical Solution for Three-Dimensional Stresses in a Short Length FGM Hollow Cylinder
,”
Z. Angew. Math. Mech.
,
87
(
6
), pp.
413
429
.
16.
Hosseini Kordkheili
,
S. A.
, and
Naghdabadi
,
R.
,
2008
, “
Thermoelastic Analysis of Functionally Graded Cylinders Under Axial Loading
,”
J. Therm. Stresses
,
31
(
1
), pp.
1
17
.
17.
Asgari
,
M.
,
2015
, “
Two Dimensional Functionally Graded Material Finite Thick Hollow Cylinder Axisymmetric Vibration Mode Shapes Analysis Based on Exact Elasticity Theory
,”
J. Theor. Appl. Mech.
,
45
(
2
), pp.
3
20
.
18.
Dai
,
H.-L.
,
Luo
,
W.-F.
, and
Dai
,
T.
,
2016
, “
Multi-Field Coupling Static Bending of a Finite Length Inhomogeneous Double-Layered Structure With Inner Hollow Cylinder and Outer Shell
,”
Appl. Math. Modell.
,
40
(
11–12
), pp.
6006
6025
.
19.
Chen
,
W. Q.
,
Bian
,
Z. G.
,
Lv
,
C. F.
, and
Ding
,
H. J.
,
2004
, “
3D Free Vibration Analysis of a Functionally Graded Piezoelectric Hollow Cylinder Filled With Compressible Fluid
,”
Int. J. Solids Struct.
,
41
, pp.
947
964
.
20.
Alshits
,
V. I.
, and
Kirchner
,
H. O. K.
,
2001
, “
Cylindrically Anisotropic, Radially Inhomogeneous Elastic Materials
,”
Proc. R. Soc. London, Ser. A
,
457
(
2007
), pp.
671
693
.
21.
Kim
,
K.-S.
, and
Noda
,
N.
,
2002
, “
Green's Function Approach to Unsteady Thermal Stresses in an Infinite Hollow Cylinder of Functionally Graded Material
,”
Acta Mech.
,
156
(
3–4
), pp.
145
161
.
22.
Dong
,
S. B.
,
Kosmatka
,
J. B.
, and
Lin
,
H. C.
,
2001
, “
On Saint-Venant's Problem for an Inhomogeneous, Anisotropic Cylinder—Part I: Methodology for Saint-Venant Solutions
,”
ASME J. Appl. Mech.
,
68
(
3
), pp.
376
381
.
23.
Ter-Mkrtich'ian
,
L. N.
,
1961
, “
Some Problems in the Theory of Elasticity of Nonhomogeneous Elastic Media
,”
J. Appl. Math. Mech.
,
25
(
6
), pp.
1667
1675
.
24.
Tokovyy
,
Y. V.
, and
Ma
,
C.-C.
,
2015
, “
Analytical Solutions to the Axisymmetric Elasticity and Thermoelasticity Problems for an Arbitrarily Inhomogeneous Layer
,”
Int. J. Eng. Sci.
,
92
, pp.
1
17
.
25.
Tokovyy
,
Y. V.
,
2014
, “
Direct Integration Method
,”
Encyclopedia of Thermal Stresses
, Vol.
2
,
R. B.
Hetnarski
, ed.,
Springer
,
Dordrecht, The Netherlands
, pp.
951
960
.
26.
Vihak
,
V. M.
,
Yasinskyy
,
A. V.
,
Tokovyy
,
Y. V.
, and
Rychahivskyy
,
A. V.
,
2007
, “
Exact Solution of the Axisymmetric Thermoelasticity Problem for a Long Cylinder Subjected to Varying With-Respect-to-Length Loads
,”
J. Mech. Behav. Mater.
,
18
(
2
), pp.
141
148
.
27.
Tokovyy
,
Y. V.
, and
Ma
,
C.-C.
,
2011
, “
Analysis of Residual Stresses in a Long Hollow Cylinder
,”
Int. J. Pressure Vessels Piping
,
88
(
5–7
), pp.
248
255
.
28.
Hetnarski
,
R. B.
, and
Eslami
,
M. R.
,
2009
,
Thermal Stresses—Advanced Theory and Applications
,
Springer
,
Dordrecht, The Netherlands
.
29.
Brychkov
,
Y. A.
, and
Prudnikov
,
A. P.
,
1989
,
Integral Transforms of Generalized Functions
,
Gordon & Breach
,
New York
.
30.
Sneddon
,
I. N.
,
1956
,
Special Functions of Mathematical Physics and Chemistry
,
Interscience Publication
,
New York
.
31.
Khan
,
K. A.
, and
Hilton
,
H. H.
,
2010
, “
On Inconstant Poisson's Ratios in Non-Homogeneous Elastic Media
,”
J. Therm. Stresses
,
33
(
1
), pp.
29
36
.
32.
Lakes
,
R.
,
1993
, “
Advances in Negative Poisson's Ratio Materials
,”
Adv. Mater.
,
5
(
4
), pp.
293
296
.
33.
Hoang
,
T. M.
, and
Drugan
,
W. J.
,
2016
, “
Tailored Heterogeneity Increases Overall Stability Regime of Composites Having a Negative-Stiffness Inclusion
,”
J. Mech. Phys. Solids
,
88
, pp.
123
149
.
You do not currently have access to this content.