This work reveals the potential of mechanics of structure genome (MSG) for the free-edge stress analysis of composite laminates. First, the cross-sectional analysis specialized from MSG is formulated for solving a generalized free-edge problem of composite laminates. Then, MSG and the companion code SwiftComp™ are applied to the free-edge stress analysis of several composite laminates with arbitrary layups and general loads including extension, torsion, in-plane and out-of-plane bending, and their combinations. The results of MSG are compared with various existing solutions for symmetric angle-ply laminates. New results are presented for the free-edge stress fields in general laminates for combined mechanical loads and compared with three-dimensional (3D) finite element analysis (FEA) results, which agree very well.

References

References
1.
Pipes
,
R. B.
, and
Pagano
,
N.
,
1974
, “
Interlaminar Stresses in Composite Laminates—An Approximate Elasticity Solution
,”
ASME J. Appl. Mech.
,
41
(
3
), pp.
668
672
.
2.
Chan
,
W.
, and
Ochoa
,
O.
,
1987
, “
An Integrated Finite Element Model of Edge-Delamination Analysis for Laminates due to Tension, Bending, and Torsion Loads
,”
28th AIAA/ASME/AHS Structures, Structural Dynamics, and Material Conference
, Monterey, CA, Apr. 6–8,
AIAA
Paper No. 1987-0704.
3.
Mittelstedt
,
C.
, and
Becker
,
W.
,
2007
, “
Free-Edge Effects in Composite Laminates
,”
ASME Appl. Mech. Rev.
,
60
(
5
), pp.
217
245
.
4.
Kant
,
T.
, and
Swaminathan
,
K.
,
2000
, “
Estimation of Transverse/Interlaminar Stresses in Laminated Composites—A Selective Review and Survey of Current Developments
,”
Compos. Struct.
,
49
(
1
), pp.
65
75
.
5.
Pipes
,
R. B.
, and
Pagano
,
N.
,
1970
, “
Interlaminar Stresses in Composite Laminates Under Uniform Axial Extension
,”
J. Compos. Mater.
,
4
(
4
), pp.
538
548
.
6.
Wang
,
A.
, and
Crossman
,
F. W.
,
1977
, “
Some New Results on Edge Effect in Symmetric Composite Laminates
,”
J. Compos. Mater.
,
11
(
1
), pp.
92
106
.
7.
Wang
,
S.
, and
Yuan
,
F.-G.
,
1983
, “
A Singular Hybrid Finite Element Analysis of Boundary-Layer Stresses in Composite Laminates
,”
Int. J. Solids Struct.
,
19
(
9
), pp.
825
837
.
8.
Leknitskii
,
S. G.
, and
Fern
,
P.
,
1963
,
Theory of Elasticity of an Anisotropic Elastic Body
,
Holden-Day
,
San Francisco, CA
.
9.
Pipes
,
R. B.
,
Goodsell
,
J.
,
Ritchey
,
A.
,
Dustin
,
J.
, and
Gosse
,
J.
,
2010
, “
Interlaminar Stresses in Composite Laminates: Thermoelastic Deformation
,”
Compos. Sci. Technol.
,
70
(
11
), pp.
1605
1611
.
10.
Goodsell
,
J.
,
Pagano
,
N. J.
,
Kravchenko
,
O.
, and
Pipes
,
R. B.
,
2013
, “
Interlaminar Stresses in Composite Laminates Subjected to Anticlastic Bending Deformation
,”
ASME J. Appl. Mech.
,
80
(
4
), p.
041020
.
11.
Goodsell
,
J.
, and
Pipes
,
R. B.
,
2016
, “
Free-Edge Interlaminar Stresses in Angle-Ply Laminates: A Family of Analytic Solutions
,”
ASME J. Appl. Mech.
,
83
(
5
), p.
051010
.
12.
Hsu
,
P. W.
, and
Herakovich
,
C. T.
,
1977
, “
Edge Effects in Angle-Ply Composite Laminates
,”
J. Compos. Mater.
,
11
(
4
), pp.
422
428
.
13.
Tang
,
S.
, and
Levy
,
A.
,
1975
, “
A Boundary Layer Theory—Part II: Extension of Laminated Finite Strip
,”
J. Compos. Mater.
,
9
(
1
), pp.
42
52
.
14.
Pagano
,
N.
,
1974
, “
On the Calculation of Interlaminar Normal Stress in Composite Laminate
,”
J. Compos. Mater.
,
8
(
1
), pp.
65
81
.
15.
Becker
,
W.
,
1993
, “
Closed-Form Solution for the Free-Edge Effect in Cross-Ply Laminates
,”
Compos. Struct.
,
26
(
1
), pp.
39
45
.
16.
Becker
,
W.
,
1994
, “
Closed-Form Analysis of the Free Edge Effect in Angle-Ply Laminates
,”
ASME J. Appl. Mech.
,
61
(
1
), pp.
209
211
.
17.
Murty
,
A. K.
, and
Kumar
,
H. H.
,
1989
, “
Modelling of Symmetric Laminates Under Extension
,”
Compos. Struct.
,
11
(
1
), pp.
15
32
.
18.
Tahani
,
M.
, and
Nosier
,
A.
,
2003
, “
Edge Effects of Uniformly Loaded Cross-Ply Composite Laminates
,”
Mater. Des.
,
24
(
8
), pp.
647
658
.
19.
Tahani
,
M.
, and
Nosier
,
A.
,
2003
, “
Free Edge Stress Analysis of General Cross-Ply Composite Laminates Under Extension and Thermal Loading
,”
Compos. Struct.
,
60
(
1
), pp.
91
103
.
20.
Nosier
,
A.
, and
Bahrami
,
A.
,
2006
, “
Free-Edge Stresses in Antisymmetric Angle-Ply Laminates in Extension and Torsion
,”
Int. J. Solids Struct.
,
43
(
22
), pp.
6800
6816
.
21.
Nosier
,
A.
, and
Bahrami
,
A.
,
2007
, “
Interlaminar Stresses in Antisymmetric Angle-Ply Laminates
,”
Compos. Struct.
,
78
(
1
), pp.
18
33
.
22.
Nosier
,
A.
, and
Maleki
,
M.
,
2008
, “
Free-Edge Stresses in General Composite Laminates
,”
Int. J. Mech. Sci.
,
50
(
10
), pp.
1435
1447
.
23.
Sarvestani
,
H. Y.
, and
Sarvestani
,
M. Y.
,
2012
, “
Free-Edge Stress Analysis of General Composite Laminates Under Extension, Torsion and Bending
,”
Appl. Math. Modell.
,
36
(
4
), pp.
1570
1588
.
24.
Kassapoglou
,
C.
, and
Lagace
,
P.
,
1986
, “
An Efficient Method for the Calculation of Interlaminar Stresses in Composite Materials
,”
ASME J. Appl. Mech.
,
53
(
4
), pp.
744
750
.
25.
Lin
,
C.-C.
,
Hsu
,
C.-Y.
, and
Ko
,
C.-C.
,
1995
, “
Interlaminar Stresses in General Laminates With Straight Free Edges
,”
AIAA J.
,
33
(
8
), pp.
1471
1476
.
26.
Yin
,
W.-L.
,
1994
, “
Free-Edge Effects in Anisotropic Laminates Under Extension, Bending and Twisting, Part I: A Stress-Function-Based Variational Approach
,”
ASME J. Appl. Mech.
,
61
(
2
), pp.
410
415
.
27.
Yin
,
W.-L.
,
1994
, “
Free-Edge Effects in Anisotropic Laminates Under Extension, Bending, and Twisting, Part II: Eigenfunction Analysis and the Results for Symmetric Laminates
,”
ASME J. Appl. Mech.
,
61
(
2
), pp.
416
421
.
28.
Kim
,
T.
, and
Atluri
,
S. N.
,
1994
, “
Interlaminar Stresses in Composite Laminates Under Out-of-Plane Shear/Bending
,”
AIAA J.
,
32
(
8
), pp.
1700
1708
.
29.
Kim
,
T.
, and
Atluri
,
S.
,
1995
, “
Analysis of Edge Stresses in Composite Laminates Under Combined Thermo-Mechanical Loading, Using a Complementary Energy Approach
,”
Comput. Mech.
,
16
(
2
), pp.
83
97
.
30.
Cho
,
M.
, and
Kim
,
H. S.
,
2000
, “
Iterative Free-Edge Stress Analysis of Composite Laminates Under Extension, Bending, Twisting and Thermal Loadings
,”
Int. J. Solids Struct.
,
37
(
3
), pp.
435
459
.
31.
Tahani
,
M.
, and
Andakhshideh
,
A.
,
2012
, “
Interlaminar Stresses in Thick Rectangular Laminated Plates With Arbitrary Laminations and Boundary Conditions Under Transverse Loads
,”
Compos. Struct.
,
94
(
5
), pp.
1793
1804
.
32.
Andakhshideh
,
A.
, and
Tahani
,
M.
,
2013
, “
Free-Edge Stress Analysis of General Rectangular Composite Laminates Under Bending, Torsion and Thermal Loads
,”
Eur. J. Mech. - A/Solids
,
42
, pp.
229
240
.
33.
Dhanesh
,
N.
,
Kapuria
,
S.
, and
Achary
,
G.
,
2016
, “
Accurate Prediction of Three-Dimensional Free Edge Stress Field in Composite Laminates Using Mixed-Field Multiterm Extended Kantorovich Method
,”
Acta Mech.
, epub.
34.
Carrera
,
E.
,
2002
, “
Theories and Finite Elements for Multilayered, Anisotropic, Composite Plates and Shells
,”
Arch. Comput. Methods Eng.
,
9
(
2
), pp.
87
140
.
35.
D'Ottavio
,
M.
,
Vidal
,
P.
,
Valot
,
E.
, and
Polit
,
O.
,
2013
, “
Assessment of Plate Theories for Free-Edge Effects
,”
Composites
, Part B,
48
, pp.
111
121
.
36.
Wenzel
,
C.
,
D'Ottavio
,
M.
,
Polit
,
O.
, and
Vidal
,
P.
,
2015
, “
Assessment of Free-Edge Singularities in Composite Laminates Using Higher-Order Plate Elements
,”
Mech. Adv. Mater. Struct.
,
23
, pp.
1
44
.
37.
Vidal
,
P.
,
Gallimard
,
L.
, and
Polit
,
O.
,
2015
, “
Assessment of Variable Separation for Finite Element Modeling of Free Edge Effect for Composite Plates
,”
Compos. Struct.
,
123
, pp.
19
29
.
38.
Esquej
,
R.
,
Castejon
,
L.
,
Lizaranzu
,
M.
,
Carrera
,
M.
,
Miravete
,
A.
, and
Miralbes
,
R.
,
2013
, “
A New Finite Element Approach Applied to the Free Edge Effect on Composite Materials
,”
Compos. Struct.
,
98
, pp.
121
129
.
39.
Icardi
,
U.
, and
Bertetto
,
A. M.
,
1995
, “
An Evaluation of the Influence of Geometry and of Material Properties at Free Edges and at Corners of Composite Laminates
,”
Comput. Struct.
,
57
(
4
), pp.
555
571
.
40.
Nguyen
,
V.-T.
, and
Caron
,
J.-F.
,
2009
, “
Finite Element Analysis of Free-Edge Stresses in Composite Laminates Under Mechanical and Thermal Loading
,”
Compos. Sci. Technol.
,
69
(
1
), pp.
40
49
.
41.
Yu
,
W.
,
2015
, “
Structure Genome: Fill the Gap Between Materials Genome and Structural Analysis
,”
56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, Kissimmee, FL, Jan. 5–9,
AIAA
Paper No. 2015-0201.
42.
Yu
,
W.
,
2016
, “
A Unified Theory for Constitutive Modeling of Composites
,”
J. Mech. Mater. Struct.
,
11
(
4
), pp.
379
411
.
43.
Mittelstedt
,
C.
, and
Becker
,
W.
,
2007
, “
The Pipes–Pagano-Problem Revisited: Elastic Fields in Boundary Layers of Plane Laminated Specimens Under Combined Thermomechanical Load
,”
Compos. Struct.
,
80
(
3
), pp.
373
395
.
You do not currently have access to this content.