The present work serves to document the development and findings associated with a wavelet-based multiscale simulation analysis for anisotropic grain growth of a two-dimensional polycrystalline material. In particular, lattice-based Monte Carlo and atomically-based Molecular Dynamics simulations are used to compute the grain boundary energies over their respective spatial domains. Serial coupling is performed utilizing an orthonormal set of Haar wavelet transforms embedded within a corresponding multiresolution analysis. For the Monte Carlo approach, anisotropies in grain boundary energies, caused by differences in grain orientation (texturing), are examined using two distinct methods, while the molecular dynamics simulations, offering inherent anisotropy, are conducted assuming the interatomic Lennard Jones potential. Among other findings, under the present context, the results confirm the viability of the wavelet-based multiresolution analysis (MRA) method for use as a potential coupling agent, and provide substantiation for its use with other applications. The results further offer quantitative comparisons between isotropic and anisotropic modeling results, and demonstrate their range of applicability.

References

References
1.
Tjong
,
S. C.
, and
Chen
,
H.
,
2004
, “
Nanocrystalline Materials and Coatings
,”
Mater. Sci. Eng. R
,
45
(1–2), pp.
1
88
.
2.
Liu
,
Z. J.
,
Zhang
,
C. H.
,
Shen
,
Y. G.
, and
Mai
,
Y.-W.
,
2004
, “
Monte Carlo Simulation of Nanocrystalline TiN/Amorphous SiNx Composite Films
,”
J. Appl. Phys.
,
95
(
2
), pp.
758
760
.
3.
Lu
,
C.
,
Mai
,
Y.-W.
, and
Shen
,
Y. G.
,
2006
, “
Recent Advances on Understanding the Origin of Superhardness in Nanocomposite Coatings: A Critical Review
,”
J. Mater. Sci.
,
41
(
3
), pp.
937
950
.
4.
Liu
,
Z. J.
,
Shum
,
P. W.
, and
Shen
,
Y. G.
,
2004
, “
Hardening Mechanisms of Nanocrystalline Ti-Al-N Solid Solution Films
,”
Thin Solid Films
,
468
(1–2), p.
161
.
5.
Yang
,
W.
,
Chen
,
L.
, and
Messing
,
G.
,
1995
, “
Computer Simulation of Anisotropic Grain Growth
,”
Mater. Sci. Eng., A
,
195
(
1–2
), pp.
179
187
.
6.
Fan
,
D.
, and
Chen
,
L.-Q.
,
1997
, “
Diffusion-Controlled Grain Growth in Two Phase Solids
,”
Acta. Mater.
,
45
(
8
), p.
3297
.
7.
Potts
,
R. B.
,
1952
, “
Some Generalized Order-Disorder Transformations
,”
Math. Proc.
,
48
(
1
), pp.
106
109
.
8.
Baxter
,
R. J.
,
1982
,
Exactly Solved Models in Statistical Mechanics
,
Academic Press
,
London
.
9.
Allen
,
J. B.
, and
Walter
,
C.
,
2012
, “
Numerical Simulation of the Temperature and Stress Field Evolution Applied to the Field Assisted Sintering Technique
,”
ISRN Mater. Sci.
,
2012
(
1
), p.
698158
.
10.
Allen
,
J. B.
,
Cornwell
,
C. F.
,
Devine
,
B. D.
, and
Welch
,
C. R.
,
2013
, “
Simulations of Anisotropic Grain Growth in Single Phase Materials Using Q-State Monte Carlo
,”
Comput Mater. Sci. (Elsevier)
,
71
(
1
), pp.
25
32
.
11.
Allen
,
J. B.
,
Cornwell
,
C. F.
,
Devine
,
B. D.
, and
Welch
,
C. R.
,
2013
, “
Simulations of Anisotropic Grain Growth Subject to Thermal Gradients Using Q-State Monte Carlo
,”
ASME J. Eng. Mater. Technol.
,
135
(
4
), p.
041005
.
12.
Zheng
,
Y. G.
,
Lu
,
C.
,
Mai
,
Y.-W.
,
Gu
,
Y. X.
,
Zhang
,
H. W.
, and
Chen
,
Z.
,
2006
, “
Monte Carlo Simulation of Grain Growth in Two-Phase Nanocrystalline Materials
,”
Appl. Phys. Lett.
,
88
(
14
), p.
144103
.
13.
Basdevant
,
C.
,
Perrier
,
V.
,
Philipovitch
,
T.
, and
DoKhac
,
M.
,
1993
,“
Local Spectral Analysis of Turbulent Flows Using Wavelet Transforms
,”
Vortex Flows and Related Numerical Methods
,
J. T.
Beale
,
G. H.
Cottet
, and
S.
Huberson
, eds., Vol.
395
,
Kluwer Academic Publishers
,
The Netherlands
, pp.
1
26
.
14.
Frantziskonis
,
G.
, and
Deymier
,
P. A.
,
2000
, ‘‘
Wavelet Methods for Analyzing and Bridging Simulations at Complementary Scales—the Compound Wavelet Matrix and Application to Microstructure Evolution
,”
Model. Simul. Mater. Sci. Eng.
,
8
(
5
), pp.
649
664
.
15.
Frantziskonis
,
G.
, and
Deymier
,
P. A.
,
2003
, ‘‘
Wavelet-Based Spatial and Temporal Multiscaling: Bridging the Atomistic and Continuum Space and Time Scales
,”
Phys. Rev. B
,
68
(
2
), p.
024105
.
16.
Pancaldi
,
V.
,
Christensen
,
K.
, and
King
,
R. P.
,
2007
, ‘‘
Permeability Up-Scaling Using Haar Wavelets
.,”
Transp. Porous Media
,
67
(
3
), pp.
395
412
.
17.
Chen
,
J. S.
,
Teng
,
H.
, and
Nakano
,
A.
,
2007
, ‘‘
Wavelet-Based Multi-Scale Coarse Graining Approach for DNA Molecules
,”
Finite Elem. Anal. Des.
,
43
(
5
), pp.
346
360
.
18.
Ismail
,
E.
,
Ismail
,
A. E.
,
Rutledge
,
G. C.
, and
Stephanopoulos
,
G.
,
2005
, ‘‘
Using Wavelet Transforms for Multiresolution Materials Modeling
,”
Comput. Chem. Eng.
,
29
(
4
), pp.
689
700
.
19.
Kevlahan
,
N. K. R.
,
Vasilyev
,
O.
, and
Cherhabili
,
A.
,
2000
, ‘‘
An Adaptive Wavelet Method for Turbulence in Complex Geometries
,” 16th
IMACS
World Congress, Lausaunne, Switzerland, Vol.
41
, pp.
1
39
.
20.
Read
,
W. T.
, and
Shockley
,
W.
,
1950
, “
Dislocation Models of Crystal Grain Boundaries
,”
Phys. Rev.
,
78
(
3
), pp.
275
289
.
21.
Holm
,
E. A.
,
Hassold
,
G. N.
, and
Miodownik
,
M. A.
,
2001
, “
On Misorientation Distribution Evolution During Anisotropic Grain Growth
,”
Acta Mater.
,
49
(
15
), pp.
2981
2991
.
22.
Srolovitz
,
D. J.
,
Anderson
,
M. P.
,
Grest
,
G. S.
, and
Rollett
,
A. D.
,
1988
, “
Computer Simulation of Recrystallization—II. Heterogeneous Nucleation and Growth
,”
Acta Metal.
,
36
(
8
), pp.
2115
2128
.
23.
Metropolis
,
N.
,
Rosenbluth
,
A. W.
,
Rosenbluth
,
M. N.
,
Teller
,
A. T.
, and
Teller
,
E. J.
,
1953
, “
Equation of State Calculations by Fast Computing Machines
,”
J. Chem. Phys.
,
21
(
6
), p.
1087
.
24.
Cai
,
W.
,
Li
,
J.
, and
S.
Yip
,
2012
, “
Molecular Dynamics
,”
Compr. Nucl. Mater.
,
1
(
1
), p.
249
.
25.
Lennard-Jones
,
J. E.
,
1924
, “
On the Determination of Molecular Fields
,”
Proc. R. Soc. London A
,
106
(
738
), pp.
463
477
.
26.
Nosé
,
S.
,
1984
, “
A Unified Formulation of the Constant Temperature Molecular-Dynamics Methods
,”
J. Chem. Phys.
,
81
(
1
), pp.
511
519
.
27.
Hoover
,
G. W.
,
1985
, “
Canonical Dynamics: Equilibrium Phase-Space Distributions
,”
Phys. Rev. A
,
31
(
3
), pp.
1695
1697
.
28.
Meyer
,
Y.
,
1992
,
Wavelets and Operators
,
Cambridge University
,
Cambridge, UK
.
29.
Mallat
,
S.
,
1989
, “
A Theory for Multiresolution Signal Decomposition
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
11
(
7
), pp.
674
693
.
30.
Daubechies
,
I.
,
1992
, “
Ten Lectures on Wavelets
,”
SIAM
,
Philadelphia, PA
.
31.
Jawerth
,
B.
, and
Sweldens
,
W.
,
1993
, “
An Overview of Wavelet-Based Multiresolution Analyses
,”
SIAM Rev.
,
36
(
3
), pp.
377
412
.
32.
Haar
,
A.
,
1910
, “
Zur Theorie der orthogonalen Funktionensysteme
,”
Mathematische Annalen
,
69
(
3
), pp.
331
371
.
33.
Garcia
,
A. L.
,
Tikare
,
V.
, and
Holm
,
E. A.
,
2008
, “
Three-Dimensional Simulation of Grain Growth in a Thermal Gradient With Non-Uniform Grain Boundary Mobility
,”
Scr. Mater.
,
59
(
6
), pp.
661
664
.
34.
Atkinson
,
H. V.
,
1988
, “
Theories of Normal Grain Growth in Pure Single Phase Systems
,”
Acta Metall.
,
36
(
3
), pp.
469
491
.
35.
Ling
,
S.
,
Anderson
,
M. P.
, and
Grest
,
G. S.
,
1992
, “
Comparison of Soap Froth and Simulation of Large-Q Potts Model
,”
Mater. Sci. Forum
,
94–96
(
1
), p.
39
36.
Wolfram Research
,
2016
, “
Mathematica, Version 10.4
,” Wolfram Research, Champaign, IL.
You do not currently have access to this content.