Convergence characteristics of the locally exact homogenization theory for periodic materials, first proposed by Drago and Pindera (2008, “A Locally-Exact Homogenization Theory for Periodic Microstructures With Isotropic Phases,” ASME J. Appl. Mech., 75(5), p. 051010) and recently generalized by Wang and Pindera (“Locally-Exact Homogenization Theory for Transversely Isotropic Unidirectional Composites,” Mech. Res. Commun. (in press); 2016, “Locally-Exact Homogenization of Unidirectional Composites With Coated or Hollow Reinforcement,” Mater. Des., 93, pp. 514–528; and 2016, “Locally Exact Homogenization of Unidirectional Composites With Cylindrically Orthotropic Fibers,” ASME J. Appl. Mech., 83(7), p. 071010), are examined vis-a-vis the manner of implementing periodic boundary conditions. The locally exact theory separates the unit cell problem into interior and exterior problems, with the separable interior problem solved exactly in cylindrical coordinates and the inseparable exterior problem tackled using a balanced variational principle. This variational principle leads to exceptionally fast and well-behaved convergence of the Fourier series coefficients in the displacement field representation of the unit cell's different phases. Herein, we compare the solution's convergence behavior based on the balanced variational principle with that based on the constrained energy-based principle originally proposed by Jirousek (1978, “Basis for Development of Large Finite Elements Locally Satisfying All Fields Equations,” Comput. Methods Appl. Mech. Eng., 14, pp. 65–92) in the context of locally exact finite-element analysis. The relevance of this comparison lies in the recently rediscovered implementation of Jirousek's constrained variational principle in the homogenization of periodic materials.

References

References
1.
Pindera
,
M.-J.
,
Khatam
,
H.
,
Drago
,
A. S.
, and
Bansal
,
Y.
,
2009
, “
Micromechanics of Spatially Uniform Heterogeneous Media: A Critical Review and Emerging Approaches
,”
Composites, Part B
,
40
(
5
), pp.
349
378
.
2.
Charalambakis
,
N.
,
2010
, “
Homogenization Techniques and Micromechanics. A Survey and Perspectives
,”
ASME Appl. Mech. Rev.
,
63
(
3
), p.
030803
.
3.
Cavalcante
,
M. A. A.
,
Pindera
,
M.-J.
, and
Khatam
,
H.
,
2012
, “
Finite-Volume Micromechanics of Periodic Materials: Past, Present and Future
,”
Composites, Part B
,
43
(
6
), pp.
2521
2543
.
4.
Nemat-Nasser
,
S.
,
Iwakuma
,
T.
, and
Hejazi
,
M.
,
1982
, “
On Composites With Periodic Structures
,”
Mech. Mater.
,
1
(
3
), pp.
239
267
.
5.
Guinovart-Diaz
,
R.
,
Bravo-Castillero
,
J.
,
Rodriguez-Ramos
,
R.
, and
Sabina
,
F. J.
,
2001
, “
Closed-Form Expressions for the Effective Coefficients of a Fiber-Reinforced Composite With Transversely Isotropic Constituents: I. Elastic and Hexagonal Symmetry
,”
J. Mech. Phys. Solids
,
49
(
7
), pp.
1445
1462
.
6.
Wang
,
J.
,
Mogilevskaya
,
S. G.
, and
Crouch
,
S. L.
,
2005
, “
An Embedding Method for Modeling Micromechanical Behavior and Macroscopic Properties of Composite Materials
,”
Int. J. Solids Struct.
,
42
(16–17), pp.
4588
4612
.
7.
Crouch
,
S. L.
, and
Mogilevskaya
,
S. G.
,
2006
, “
Loosening of Elastic Inclusions
,”
Int. J. Solids Struct.
,
43
(
6
), pp.
1638
1668
.
8.
Drago
,
A. S.
, and
Pindera
,
M.-J.
,
2008
, “
A Locally-Exact Homogenization Theory for Periodic Microstructures With Isotropic Phases
,”
ASME J. Appl. Mech.
,
75
(
5
), p.
051010
.
9.
Mogilevskaya
,
S. G.
,
Crouch
,
S. L.
,
Stolarski
,
H. K.
, and
Benusiglio
,
A.
,
2010
, “
Equivalent Inhomogeneity Method for Evaluating the Effective Elastic Properties of Unidirectional Multi-Phase Composites With Surface/Interface Effects
,”
Int. J. Solids Struct.
,
47
(3–4), pp.
407
418
.
10.
Chatzigeorgiou
,
G.
,
Efendiev
,
Y.
,
Charalambakis
,
N.
, and
Lagoudas
,
D. C.
,
2012
, “
Effective Thermoelastic Properties of Composites With Periodicity in Cylindrical Coordinates
,”
Int. J. Solids Struct.
,
49
(
18
), pp.
2590
2603
.
11.
Sevostianov
,
I.
,
Rodríguez-Ramos
,
R.
,
Guinovart-Diaz
,
R.
,
Bravo-Castillero
,
J.
, and
Sabina
,
F. J.
,
2012
, “
Connections Between Different Models Describing Imperfect Interfaces in Periodic Fiber-Reinforced Composites
,”
Int. J. Solids Struct.
,
49
(
13
), pp.
1518
1525
.
12.
Guinovart-Díaz
,
R.
,
Rodríguez-Ramos
,
R.
,
Bravo-Castillero
,
J.
,
López-Realpozo
,
J. C.
,
Sabina
,
F. J.
, and
Sevostianov
,
I.
,
2013
, “
Effective Elastic Properties of a Periodic Fiber Reinforced Composite With Parallelogram-Like Arrangement of Fibers and Imperfect Contact Between Matrix and Fibers
,”
Int. J. Solids Struct.
,
50
(
13
), pp.
2022
2032
.
13.
Tsalis
,
D.
,
Baxevanis
,
T.
,
Chatzigeorgiou
,
G.
, and
Charalambakis
,
N.
,
2013
, “
Homogenization of Elastoplastic Composites With Generalized Periodicity in the Microstructure
,”
Int. J. Plast.
,
51
, pp.
161
187
.
14.
Caporale
,
A.
,
Feo
,
L.
, and
Luciano
,
R.
,
2015
, “
Eigenstrain and Fourier Series for Evaluation of Elastic Local Fields and Effective Properties of Periodic Composites
,”
Composites, Part B
,
81
, pp.
251
258
.
15.
Wang
,
G.
, and
Pindera
,
M.-J.
, “
Locally-Exact Homogenization Theory for Transversely Isotropic Unidirectional Composites
,”
Mech. Res. Commun.
(in press).
16.
Wang
,
G.
, and
Pindera
,
M.-J.
,
2016
, “
Locally-Exact Homogenization of Unidirectional Composites With Coated or Hollow Reinforcement
,”
Mater. Des.
,
93
, pp.
514
528
.
17.
Wang
,
G.
, and
Pindera
,
M.-J.
,
2016
, “
Locally Exact Homogenization of Unidirectional Composites With Cylindrically Orthotropic Fibers
,”
ASME J. Appl. Mech.
,
83
(
7
), p.
071010
.
18.
Wang
,
G.
,
2016
, “
Generalized Locally Exact Homogenization Theory for Unidirectionally Reinforced Composites
,” Ph.D. dissertation, University of Virginia, Charlottesville, VA.
19.
Jirousek
,
J.
,
1978
, “
Basis for Development of Large Finite Elements Locally Satisfying All Fields Equations
,”
Comput. Methods Appl. Mech. Eng.
,
14
(
1
), pp.
65
92
.
20.
Yan
,
P.
,
Jiang
,
C. P.
,
Song
,
F.
, and
Xu
,
X. H.
,
2010
, “
Estimation of Transverse Thermal Conductivity of Doubly-Periodic Fiber Reinforced Composites
,”
Chin. J. Aeronaut.
,
23
(
1
), pp.
54
60
.
21.
Yan
,
P.
, and
Jiang
,
C. P.
,
2010
, “
An Eigenfunction Expansion-Variational Method Based on a Unit Cell in Analysis of a Generally Doubly Periodic Array of Cracks
,”
Acta Mech.
,
210
(
1–2
), pp.
117
134
.
22.
Yan
,
P.
,
Jiang
,
C. P.
, and
Song
,
F.
,
2011
, “
An Eigenfunction Expansion-Variational Method for the Anti-Plane Electroelastic Behavior of Three-Phase Fiber Composites
,”
Mech. Mater.
,
43
(
10
), pp.
586
597
.
23.
Yan
,
P.
,
Jiang
,
C. P.
, and
Song
,
F.
,
2013
, “
Unified Series Solution for the Anti-Plane Effective Magnetoelectroelastic Moduli of Three-Phase Fiber Composites
,”
Int. J. Solids Struct.
,
50
(
1
), pp.
176
185
.
24.
Guinovart-Díaz
,
R.
,
Yan
,
P.
,
Rodríguez-Ramosa
,
R.
,
López-Realpozo
,
J. C.
,
Jiang
,
C. P.
,
Bravo-Castillero
,
J.
, and
Sabina
,
F. J.
,
2012
, “
Effective Properties of Piezoelectric Composites With Parallelogram Periodic Cells
,”
Int. J. Eng. Sci.
,
53
, pp.
58
66
.
25.
Rodríguez-Ramos
,
R.
,
Yan
,
P.
,
López-Realpozo
,
J. C.
,
Guinovart-Díaz
,
R.
,
Bravo-Castillero
,
J.
,
Sabina
,
F. J.
, and
Jiang
,
C. P.
,
2013
, “
Two Analytical Models for the Study of Periodic Fibrous Elastic Composite With Different Unit Cells
,”
Compos. Struct.
,
93
, pp.
709
714
.
26.
Bensoussan
,
A.
,
Lions
,
J.-L.
, and
Papanicolaou
,
G.
,
1978
,
Asymptotic Analysis for Periodic Structures
,
North Holland
,
Amsterdam, The Netherlands
.
27.
Sanchez-Palencia
,
E.
,
1980
,
Non-Inhomogeneous Media and Vibration Theory
(Lecture Notes in Physics, Vol.
127
),
Springer-Verlag
,
Berlin
.
28.
Drago
,
A. S.
,
2008
, “
Locally-Exact Homogenization Theory for Periodic Materials With Unidirectional Reinforcements
,” Ph.D. dissertation, University of Virginia, Charlottesville, VA.
29.
Hill
,
R.
,
1963
, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids
,
11
(
5
), pp.
357
372
.
30.
Love
,
A. E. H.
,
1892
,
A Treatise on the Mathematical Theory of Elasticity
, Vol.
I
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.