The performance of flexible/stretchable electronics may be significantly reduced by the interfacial delamination due to the large mismatch at the interface between stiff films and soft substrates. Based on the theory of viscoelasticity, a cracked composite beam model is proposed in this paper to analyze the delamination of an elastic thin film from a viscoelastic substrate. The time-varying neutral plane of the composite beam is derived analytically, and then the energy release rate of the interfacial crack is obtained from the Griffith's theory. Further, three different states of the crack propagation under constant external loadings are predicted, which has potential applications on the structural design of inorganic flexible/stretchable electronics.

References

1.
Ko
,
H. C.
,
Stoykovich
,
M. P.
,
Song
,
J.
,
Malyarchuk
,
V.
,
Choi
,
W. M.
,
Yu
,
C.-J.
,
Geddes
,
J. B.
, III
,
Xiao
,
J.
,
Wang
,
S.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2008
, “
A Hemispherical Electronic Eye Camera Based on Compressible Silicon Optoelectronics
,”
Nature
,
454
(
7205
), pp.
748
753
.
2.
Song
,
Y. M.
,
Xie
,
Y.
,
Malyarchuk
,
V.
,
Xiao
,
J.
,
Jung
,
I.
,
Choi
,
K.-J.
,
Liu
,
Z.
,
Park
,
H.
,
Lu
,
C.
,
Kim
,
R.-H.
,
Li
,
R.
,
Crozier
,
K. B.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2013
, “
Digital Cameras With Designs Inspired by the Arthropod Eye
,”
Nature
,
497
(
7447
), pp.
95
99
.
3.
Chen
,
Y.
,
Lu
,
B.
,
Chen
,
Y.
, and
Feng
,
X.
,
2015
, “
Breathable and Stretchable Temperature Sensors Inspired by Skin
,”
Sci. Rep.
,
5
, p.
11505
.
4.
Kim
,
D.-H.
,
Lu
,
N.
,
Ma
,
R.
,
Kim
,
Y.-S.
,
Kim
,
R.-H.
,
Wang
,
S.
,
Wu
,
J.
,
Won
,
S. M.
,
Tao
,
H.
,
Islam
,
A.
,
Yu
,
K. J.
,
Kim
,
T.-I.
,
Chowdhury
,
R.
,
Ying
,
M.
,
Xu
,
L.
,
Li
,
M.
,
Chung
,
H.-J.
,
Keum
,
H.
,
McCormick
,
M.
,
Liu
,
P.
,
Zhang
,
Y.-W.
,
Omenetto
,
F. G.
,
Huang
,
Y.
,
Coleman
,
T.
, and
Rogers
,
J. A.
,
2011
, “
Epidermal Electronics
,”
Science
,
333
(
6044
), pp.
838
843
.
5.
Cheng
,
H. Y.
, and
Wang
,
S. D.
,
2013
, “
Mechanics of Interfacial Delamination in Epidermal Electronics Systems
,”
ASME J. Appl. Mech.
,
81
(
4
), p.
044501
.
6.
Liu
,
Z.
,
Cheng
,
H.
, and
Wu
,
J.
,
2014
, “
Mechanics of Solar Module on Structured Substrates
,”
ASME J. Appl. Mech.
,
81
(
6
), p.
064502
.
7.
Shi
,
X.
,
Xu
,
R.
,
Li
,
Y.
,
Zhang
,
Y.
,
Ren
,
Z.
,
Gu
,
J.
,
Rogers
,
J. A.
, and
Huang
,
Y.
,
2014
, “
Mechanics Design for Stretchable, High Areal Coverage GaAs Solar Module on an Ultrathin Substrate
,”
ASME J. Appl. Mech.
,
81
(
12
), p.
124502
.
8.
Shi
,
Y.
,
Dagdeviren
,
C.
,
Rogers
,
J. A.
,
Gao
,
C. F.
, and
Huang
,
Y.
,
2015
, “
An Analytic Model for Skin Modulus Measurement Via Conformal Piezoelectric Systems
,”
ASME J. Appl. Mech.
,
82
(
9
), p.
091007
.
9.
Yuan
,
J. H.
,
Shi
,
Y.
,
Pharr
,
M.
,
Feng
,
X.
,
Rogers
,
J. A.
, and
Huang
,
Y.
,
2016
, “
A Mechanics Model for Sensors Imperfectly Bonded to the Skin for Determination of the Young's Moduli of Epidermis and Dermis
,”
ASME J. Appl. Mech.
,
83
(
9
), p.
084501
.
10.
Lu
,
B.
,
Chen
,
Y.
,
Ou
,
D.
,
Chen
,
H.
,
Diao
,
L.
,
Zhang
,
W.
,
Zheng
,
J.
,
Ma
,
W.
,
Sun
,
L.
, and
Feng
,
X.
,
2015
, “
Ultra-Flexible Piezoelectric Devices Integrated With Heart to Harvest the Biomechanical Energy
,”
Sci. Rep.
,
5
, p.
16065
.
11.
Zhang
,
Y. Y.
,
Chen
,
Y. S.
,
Lu
,
B. W.
,
,
C. F.
, and
Feng
,
X.
,
2016
, “
Electromechanical Modeling of Energy Harvesting From the Motion of Left Ventricle in Closed Chest Environment
,”
ASME J. Appl. Mech.
,
83
(
6
), p.
061007
.
12.
Khang
,
D. Y.
,
Jiang
,
H. Q.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2006
, “
A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates
,”
Science
,
311
(
5758
), pp.
208
212
.
13.
Kim
,
D. H.
,
Lu
,
N. S.
,
Huang
,
Y. G.
, and
Rogers
,
J. A.
,
2012
, “
Materials for Stretchable Electronics in Bioinspired and Biointegrated Devices
,”
Mrs Bull.
,
37
(
3
), pp.
226
235
.
14.
Rogers
,
J. A.
, and
Huang
,
Y. G.
,
2009
, “
A Curvy, Stretchy Future for Electronics
,”
Proc. Natl. Acad. Sci. U. S. A.
,
106
(
27
), pp.
10875
10876
.
15.
Wang
,
Y.
,
Feng
,
X.
,
Lu
,
B. W.
, and
Wang
,
G. F.
,
2013
, “
Surface Effects on the Mechanical Behavior of Buckled Thin Film
,”
ASME J. Appl. Mech.
,
80
(
2
), p.
021002
.
16.
Shi
,
Y.
,
Rogers
,
J. A.
,
Gao
,
C. F.
, and
Huang
,
Y.
,
2014
, “
Multiple Neutral Axes in Bending of a Multiple-Layer Beam With Extremely Different Elastic Properties
,”
ASME J. Appl. Mech.
,
81
(
11
), p.
114501
.
17.
Meng
,
X. H.
,
Liu
,
B. Y.
,
Wang
,
Y.
,
Zhang
,
T. H.
, and
Xiao
,
J. L.
,
2016
, “
Third-Order Polynomials Model for Analyzing Multilayer Hard/Soft Materials in Flexible Electronics
,”
ASME J. Appl. Mech.
,
83
(
8
), p.
081011
.
18.
Dai
,
L. C.
,
Feng
,
X.
,
Liu
,
B.
, and
Fang
,
D. N.
,
2010
, “
Interfacial Slippage of Inorganic Electronic Materials on Plastic Substrates
,”
Appl. Phys. Lett.
,
97
(
22
), p.
221903
.
19.
Huang
,
Y.
,
Feng
,
X.
, and
Qu
,
B. R.
,
2011
, “
Slippage Toughness Measurement of Soft Interface Between Stiff Thin Films and Elastomeric Substrate
,”
Rev. Sci. Instrum.
,
82
(
10
), p.
104704
.
20.
Park
,
S. I.
,
Ahn
,
J. H.
,
Feng
,
X.
,
Wang
,
S. D.
,
Huang
,
Y. G.
, and
Rogers
,
J. A.
,
2008
, “
Theoretical and Experimental Studies of Bending of Inorganic Electronic Materials on Plastic Substrates
,”
Adv. Funct. Mater.
,
18
(
18
), pp.
2673
2684
.
21.
Hutchinson
,
J. W.
, and
Suo
,
Z.
,
1992
, “
Mixed Mode Cracking in Layered Materials
,”
Adv. Appl. Mech.
,
29
, pp.
63
191
.
22.
Chen
,
H.
,
Feng
,
X.
, and
Chen
,
Y.
,
2014
, “
Slip Zone Model for Interfacial Failures of Stiff Film/Soft Substrate Composite System in Flexible Electronics
,”
Mech. Mater.
,
79
, pp.
35
44
.
23.
Chen
,
H.
,
Lu
,
B. W.
,
Lin
,
Y.
, and
Feng
,
X.
,
2014
, “
Interfacial Failure in Flexible Electronic Devices
,”
IEEE Electron. Device Lett.
,
35
(
1
), pp.
132
134
.
24.
Liu
,
H. M.
,
Liu
,
Z. X.
,
Xu
,
Z. L.
,
Yin
,
Z. P.
,
Huang
,
Y. A.
, and
Chen
,
J. K.
,
2015
, “
Competing Fracture of Thin-Chip Transferring From/Onto Prestrained Compliant Substrate
,”
ASME J. Appl. Mech.
,
82
(
10
), p.
101012
.
25.
Christensen
,
R. M.
,
1980
, “
A Rate-Dependent Criterion for Crack Growth
,”
Int. J. Fract.
,
16
(
5
), pp.
R233
R237
.
26.
Schapery
,
R. A.
,
1975
, “
A Theory of Crack Initiation and Growth in Viscoelastic Media
,”
Int. J. Fract.
,
11
(
1
), pp.
141
159
.
27.
Hui
,
C. Y.
,
Xu
,
D. B.
, and
Kramer
,
E. J.
,
1992
, “
A Fracture Model for a Weak Interface in a Viscoelastic Material (Small Scale Yielding Analysis)
,”
J. Appl. Phys.
,
72
(
8
), pp.
3294
3304
.
28.
Feng
,
X.
,
Cheng
,
H. Y.
,
Bowen
,
A. M.
,
Carlson
,
A. W.
,
Nuzzo
,
R. G.
, and
Rogers
,
J. A.
,
2013
, “
A Finite-Deformation Mechanics Theory for Kinetically Controlled Transfer Printing
,”
ASME J. Appl. Mech.
,
80
(
6
), p.
061023
.
29.
Srinivas
,
M. V.
, and
Ravichandran
,
G.
,
1994
, “
Interfacial Crack Propagation in a Thin Viscoelastic Film Bonded to an Elastic Substrate
,”
Int. J. Fract.
,
65
(
1
), pp.
31
47
.
30.
Christensen
,
R.
,
2012
,
Theory of Viscoelasticity: An Introduction
,
Academic Press
,
New York
.
31.
Huet
,
C.
,
1992
, “
Minimum Theorems for Viscoelasticity
,”
Eur. J. Mech. A-Solids
,
11
(
5
), pp.
653
684
.
32.
Griffith
,
A. A.
,
1921
, “
The Phenomena of Rupture and Flow in Solids
,”
Philos. Trans. Ser. A
,
221
, pp.
163
198
.
You do not currently have access to this content.