Uniaxial tension–unloading recovery, creep-recovery, and stress-controlled cyclic tests are first performed to investigate the recoverable viscoelasticity and irrecoverable viscoplasticity (including the uniaxial ratchetting) of ultrahigh molecular weight polyethylene (UHMWPE) polymer at room temperature. The results show that obvious time-dependent ratchetting occurs in the asymmetrical stress-controlled cyclic tension–compression and tension–tension tests of the UHMWPE, and total ratchetting strain consists of both recoverable viscoelastic and irrecoverable viscoplastic parts. Based on the experimental observation, a new viscoelastic–viscoplastic constitutive model is proposed to describe the time-dependent ratchetting of the UHMWPE. In the proposed model, the viscoplastic strain is set to be contributed simultaneously by the unified viscoplastic and creep ones. Meanwhile, a memory surface is introduced into the viscoelastic model to improve the description to the shapes of stress–strain hysteresis loops. Finally, the proposed model is verified by comparing the predictions with the corresponding experimental results of the UHMWPE. It is clearly demonstrated that the proposed model predicts the creep, viscoelastic recovery, and uniaxial time-dependent ratchetting of the UHMWPE well.

References

References
1.
Lewis
,
G.
,
2001
, “
Properties of Crosslinked Ultra-High Molecular Weight Polyethylene
,”
Biomaterials
,
22
(
4
), pp.
371
401
.
2.
Pruitt
,
L. A.
,
2005
, “
Deformation, Yielding, Fracture and Fatigue Behavior of Conventional and Highly Cross-Linked Ultra-High Molecular Weight Polyethylene
,”
Biomaterials
,
26
(
8
), pp.
905
915
.
3.
Hua
,
X.
,
Wroblewski
,
B. M.
,
Jin
,
Z.
, and
Wang
,
L.
,
2012
, “
The Effect of Cup Inclination and Wear on the Contact Mechanics and Cement Fixation for Ultra-High Molecular Weight Polyethylene Total Hip Replacements
,”
Med. Eng. Phys.
,
34
(
3
), pp.
318
325
.
4.
Pan
,
D.
,
Kang
,
G.
,
Zhu
,
Z.
, and
Liu
,
Y.
,
2010
, “
Experimental Study on Uniaxial Time-Dependent Ratcheting of a Polyetherimide Polymer
,”
J. Zhejiang Univ. Sci. A
,
11
(
10
), pp.
804
810
.
5.
Chen
,
K.
,
Kang
,
G.
,
Lu
,
F.
, and
Jiang
,
H.
,
2015
, “
Uniaxial Cyclic Deformation and Internal Heat Production of Ultra-High Molecular Weight Polyethylene
,”
J. Polym. Res.
,
22
(
11
), pp.
1
9
.
6.
Benaarbia
,
A.
,
Chrysochoos
,
A.
, and
Robert
,
G.
,
2014
, “
Influence of Relative Humidity and Loading Frequency on the PA6. 6 Cyclic Thermomechanical Behavior—Part I: Mechanical and Thermal Aspects
,”
Polym. Test.
,
40
, pp.
290
298
.
7.
Benaarbia
,
A.
,
Chrysochoos
,
A.
, and
Robert
,
G.
,
2015
, “
Influence of Relative Humidity and Loading Frequency on the PA6. 6 Thermomechanical Cyclic Behavior—Part II: Energy Aspects
,”
Polym. Test.
,
41
, pp.
92
98
.
8.
Jiang
,
H.
,
Zhang
,
J.
,
Kang
,
G.
,
Xi
,
C.
,
Jiang
,
C.
, and
Liu
,
Y.
,
2013
, “
A Test Procedure for Separating Viscous Recovery and Accumulated Unrecoverable Deformation of Polymer Under Cyclic Loading
,”
Polym. Test.
,
32
(
8
), pp.
1445
1451
.
9.
Lu
,
F.
,
Kang
,
G.
,
Zhu
,
Y.
,
Xi
,
C.
, and
Jiang
,
H.
,
2016
, “
Experimental Observation on Multiaxial Ratchetting of Polycarbonate Polymer at Room Temperature
,”
Polym. Test.
,
50
, pp.
135
144
.
10.
Averett
,
R. D.
,
Realff
,
M. L.
,
Michielsen
,
S.
, and
Neu
,
R. W.
,
2006
, “
Mechanical Behavior of Nylon 66 Fibers Under Monotonic and Cyclic Loading
,”
Compos. Sci. Technol.
,
66
(
11
), pp.
1671
1681
.
11.
Kang
,
G.
,
Liu
,
Y.
,
Wang
,
Y.
,
Chen
,
Z.
, and
Xu
,
W.
,
2009
, “
Uniaxial Ratchetting of Polymer and Polymer Matrix Composites: Time-Dependent Experimental Observations
,”
Mater. Sci. Eng. A
,
523
(
1
), pp.
13
20
.
12.
Liu
,
W.
,
Gao
,
Z.
, and
Yue
,
Z.
,
2008
, “
Steady Ratcheting Strains Accumulation in Varying Temperature Fatigue Tests of PMMA
,”
Mater. Sci. Eng. A
,
492
(
1
), pp.
102
109
.
13.
Lu
,
F.
,
Kang
,
G.
,
Jiang
,
H.
,
Zhang
,
J.
, and
Liu
,
Y.
,
2014
, “
Experimental Studies on the Uniaxial Ratchetting of Polycarbonate Polymer at Different Temperatures
,”
Polym. Test.
,
39
, pp.
92
100
.
14.
Shen
,
X.
,
Xia
,
Z.
, and
Ellyin
,
F.
,
2004
, “
Cyclic Deformation Behavior of an Epoxy Polymer—Part I: Experimental Investigation
,”
Polym. Eng. Sci.
,
44
(
12
), pp.
2240
2246
.
15.
Zhang
,
Z.
, and
Chen
,
X.
,
2009
, “
Multiaxial Ratcheting Behavior of PTFE at Room Temperature
,”
Polym. Test.
,
28
(
3
), pp.
288
295
.
16.
Zhang
,
Z.
,
Chen
,
X.
, and
Wang
,
Y.
,
2010
, “
Uniaxial Ratcheting Behavior of Polytetrafluoroethylene at Elevated Temperature
,”
Polym. Test.
,
29
(
3
), pp.
352
357
.
17.
Hassan
,
T.
,
Çolak
,
O. U.
, and
Clayton
,
P. M.
,
2011
, “
Uniaxial Strain and Stress-Controlled Cyclic Responses of Ultrahigh Molecular Weight Polyethylene: Experiments and Model Simulations
,”
ASME J. Eng. Mater. Technol.
,
133
(
2
), p.
021010
.
18.
Asmaz
,
K.
,
Colak
,
O. U.
, and
Hassan
,
T.
,
2014
, “
Biaxial Ratcheting of Ultra High Molecular Weight Polyethylene: Experiments and Constitutive Modeling
,”
J. Test. Eval.
,
42
(
6
), pp. 1–7.
19.
Reeves
,
E. A.
,
Barton
,
D. C.
,
FitzPatrick
,
D. P.
, and
Fisher
,
J.
,
1998
, “
A Two-Dimensional Model of Cyclic Strain Accumulation in Ultra-High Molecular Weight Polyethylene Knee Replacements
,”
Proc. Inst. Mech. Eng. Part H
,
212
(
3
), pp.
189
198
.
20.
Chen
,
K.
,
Kang
,
G.
,
Lu
,
F.
,
Xu
,
J.
, and
Jiang
,
H.
,
2016
, “
Temperature-Dependent Uniaxial Ratchetting of Ultra-High Molecular Weight Polyethylene
,”
Fatigue Fract. Eng. Mater. Struct.
,
39
(
7
), pp.
839
849
.
21.
Beake
,
B.
,
2006
, “
Modelling Indentation Creep of Polymers: A Phenomenological Approach
,”
J. Phys. D: Appl. Phys.
,
39
(
20
), pp.
4478
4485
.
22.
Schapery
,
R. A.
,
1969
, “
On the Characterization of Nonlinear Viscoelastic Materials
,”
Polym. Eng. Sci.
,
9
(
4
), pp.
295
310
.
23.
Lai
,
J.
, and
Bakker
,
A.
,
1996
, “
3-D Schapery Representation for Non-Linear Viscoelasticity and Finite Element Implementation
,”
Comput. Mech.
,
18
(
3
), pp.
182
191
.
24.
Pan
,
D.
,
Kang
,
G.
, and
Jiang
,
H.
,
2012
, “
Viscoelastic Constitutive Model for Uniaxial Time-Dependent Ratcheting of Polyetherimide Polymer
,”
Polym. Eng. Sci.
,
52
(
9
), pp.
1874
1881
.
25.
Xia
,
Z.
,
Shen
,
X.
, and
Ellyin
,
F.
,
2005
, “
An Assessment of Nonlinearly Viscoelastic Constitutive Models for Cyclic Loading: The Effect of a General Loading/Unloading Rule
,”
Mech. Time-Depend. Mater.
,
9
(
4
), pp.
79
98
.
26.
Xia
,
Z.
,
Shen
,
X.
, and
Ellyin
,
F.
,
2005
, “
Cyclic Deformation Behavior of an Epoxy Polymer—Part II: Predictions of Viscoelastic Constitutive Models
,”
Polym. Eng. Sci.
,
45
(
1
), pp.
103
113
.
27.
Lai
,
D.
,
Yakimets
,
I.
, and
Guigon
,
M.
,
2005
, “
A Non-Linear Viscoelastic Model Developed for Semi-Crystalline Polymer Deformed at Small Strains With Loading and Unloading Paths
,”
Mater. Sci. Eng. A
,
405
(
1
), pp.
266
271
.
28.
Nguyen
,
S. T. T.
,
Castagnet
,
S.
, and
Grandidier
,
J. C.
,
2013
, “
Nonlinear Viscoelastic Contribution to the Cyclic Accommodation of High Density Polyethylene in Tension: Experiments and Modeling
,”
Int. J. Fatigue
,
55
, pp.
166
177
.
29.
Bergström
,
J.
,
Kurtz
,
S.
,
Rimnac
,
C.
, and
Edidin
,
A.
,
2002
, “
Constitutive Modeling of Ultra-High Molecular Weight Polyethylene Under Large-Deformation and Cyclic Loading Conditions
,”
Biomaterials
,
23
(
11
), pp.
2329
2343
.
30.
Schapery
,
R. A.
,
1997
, “
Nonlinear Viscoelastic and Viscoplastic Constitutive Equations Based on Thermodynamics
,”
Mech. Time-Depend. Mater.
,
1
(
2
), pp.
209
240
.
31.
Levenberg
,
E.
, and
Uzan
,
J.
,
2004
, “
Triaxial Small-Strain Viscoelastic-Viscoplastic Modeling of Asphalt Aggregate Mixes
,”
Mech. Time-Depend. Mater.
,
8
(
4
), pp.
365
384
.
32.
Kim
,
J. S.
, and
Muliana
,
A. H.
,
2010
, “
A Combined Viscoelastic-Viscoplastic Behavior of Particle Reinforced Composites
,”
Int. J. Solids Struct.
,
47
(
5
), pp.
580
594
.
33.
Khan
,
A.
, and
Zhang
,
H.
,
2001
, “
Finite Deformation of a Polymer: Experiments and Modeling
,”
Int. J. Plast.
,
17
(
9
), pp.
1167
1188
.
34.
Frank
,
G. J.
, and
Brockman
,
R. A.
,
2001
, “
A Viscoelastic-Viscoplastic Constitutive Model for Glassy Polymers
,”
Int. J. Solids Struct.
,
38
(
30
), pp.
5149
5164
.
35.
Drozdov
,
A.
,
2007
, “
Viscoelasticity and Viscoplasticity of Semicrystalline Polymers: Structure Property Relations for High-Density Polyethylene
,”
Comput. Mater. Sci.
,
39
(
4
), pp.
729
751
.
36.
Ayoub
,
G.
,
Zaïri
,
F.
,
Naït-Abdelaziz
,
M.
, and
Gloaguen
,
J. M.
,
2010
, “
Modelling Large Deformation Behaviour Under Loading-Unloading of Semicrystalline Polymers: Application to a High Density Polyethylene
,”
Int. J. Plast.
,
26
(
3
), pp.
329
347
.
37.
Yu
,
C.
,
Kang
,
G.
,
Lu
,
F.
,
Zhu
,
Y.
, and
Chen
,
K.
,
2016
, “
Viscoelastic-Viscoplastic Cyclic Deformation of Polycarbonate Polymer: Experiment and Constitutive Model
,”
ASME J. Appl. Mech.
,
83
(
4
), p.
041002
.
38.
Abdel-Karim
,
M.
, and
Ohno
,
N.
,
2000
, “
Kinematic Hardening Model Suitable for Ratchetting With Steady-State
,”
Int. J. Plast.
,
16
(
3
), pp.
225
240
.
39.
Kang
,
G.
,
Kan
,
Q.
,
Zhang
,
J.
, and
Sun
,
Y.
,
2006
, “
Time-Dependent Ratchetting Experiments of SS304 Stainless Steel
,”
Int. J. Plast.
,
22
(
5
), pp.
858
894
.
40.
Kang
,
G.
, and
Kan
,
Q.
,
2007
, “
Constitutive Modeling for Uniaxial Time-Dependent Ratcheting of SS304 Stainless Steel
,”
Mech. Mater.
,
39
(
5
), pp.
488
499
.
You do not currently have access to this content.