During progressive cracking of cross-ply ceramic matrix composites (CMCs), load is transferred from the fiber to the matrix in the longitudinal (0 deg) ply via shear through a compliant interphase layer, also referred to as the coating. In the material system of interest, this coating has significant thickness relative to the fiber diameter. The damage process in the cross-ply CMC is observed to be as follows: (1) elastic deformation, (2) cracking of the transverse plies, (3) matrix cracking within the longitudinal plies, (4) failure of longitudinal fibers, and (5) pullout of the cracked fibers from the matrix. In this paper, the focus is on the longitudinal (0 deg) ply. Existing shear-lag models do not fully represent either the stress transfer through the coating or the true accumulations of shear and normal stresses in the matrix. In the current study, a model is developed that takes into account both of these factors to provide a more accurate, analytical representation of the stress distribution and progressive damage accumulation in a longitudinal CMC ply.

References

References
1.
Corman
,
G. S.
, and
Luthra
,
K. L.
,
2005
, “
Silicon Melt Infiltrated Ceramic Composites (HiPerComp)
,”
Handbook of Ceramic Composites
,
Kluwer Academic Publishers
,
Boston, MA
, pp.
99
115
.
2.
Ahn
,
B.
,
Curtin
,
W.
,
Parthasarathy
,
T.
, and
Dutton
,
R.
,
1998
, “
Criteria for Crack Deflection/Penetration Criteria for Fiber-Reinforced Ceramic Matrix Composites
,”
Compos. Sci. Technol.
,
58
(
11
), pp.
1775
1784
.
3.
Jacobson
,
N. S.
,
Morscher
,
G. N.
,
Bryant
,
D. R.
, and
Tressler
,
R. E.
,
2004
, “
High-Temperature Oxidation of Boron Nitride: II, Boron Nitride Layers in Composites
,”
J. Am. Ceram. Soc.
,
82
(
6
), pp.
1473
1482
.
4.
Aveston
,
J.
,
Cooper
,
G. A.
, and
Kelly
,
A.
,
1971
, “
Single and Multiple Fracture
,” The Properties of Fibre Composites, National Physical Laboratories Conference, London, Nov. 4, pp.
15
26
.
5.
Hutchinson
,
J. W.
,
Budiansky
,
B.
, and
Evans
,
A. G.
,
1986
, “
Matrix Fracture in Fiber-Reinforced Ceramics
,”
J. Mech. Phys. Solids
,
34
(
2
), pp.
167
189
.
6.
Talreja
,
R.
,
1991
, “
Continuum Modelling of Damage in Ceramic Matrix Composites
,”
Mech. Mater.
,
12
(
2
), pp.
165
180
.
7.
Lamon
,
J.
,
2001
, “
A Micromechanics-Based Approach to the Mechanical Behavior of Brittle-Matrix Composites
,”
Compos. Sci. Technol.
,
61
(
15
), pp.
2259
2272
.
8.
Aboudi
,
J.
,
1991
, “
Micro-Failure Criteria for Coated-Fiber Composites
,”
J. Reinforced Plast. Compos.
,
10
(
2
), pp.
146
157
.
9.
Jayaraman
,
K.
, and
Reifsnider
,
K. L.
, “
Residual Stresses in a Composite With Continuously Varying Young's Modulus in the Fiber/Matrix Interphase
,”
J. Compos. Mater.
,
26
(
6
), pp.
770
791
.
10.
Wagner
,
H. D.
, and
Nairn
,
J. A.
,
1997
, “
Residual Thermal Stresses in Three Concentric Transversely Isotropic Cylinders: Application to Thermoplastic-Matrix Composites Containing a Transcrystalline Interphase
,”
Compos. Sci. Technol.
,
57
(
9–10
), pp.
1289
1302
.
11.
Hutchinson
,
J. W.
, and
Jensen
,
H. M.
,
1990
, “
Models of Fiber Debonding and Pullout in Brittle Matrix Composites With Friction
,”
Mech. Mater.
,
9
(
2
), pp.
139
163
.
12.
Marshall
,
D. B.
,
1992
, “
Analysis of Fiber Debonding and Sliding Experiments in Brittle Matrix Composites
,”
Acta Metall. Mater.
,
40
(
3
), pp.
427
441
.
13.
Waas
,
A. M.
,
2009
, “
Mechanics of Fiber Reinforced Composite Structures
,” University of Michigan, Ann Arbor, MI.
14.
Mccartney
,
L. N.
,
1998
, “
Predicting Transverse Crack Formation in Cross-Ply Laminates
,”
Compos. Sci. Technol.
,
58
(
7
), pp.
1069
1081
.
15.
Talreja
,
R.
, and
Singh
,
C.
,
2012
,
Damage and Failure of Composite Materials
,
Cambridge University Press
, Cambridge, UK.
16.
Curtin
,
W. A.
,
1999
, “
Stochastic Damage Evolution and Failure in Fiber-Reinforced Composites
,”
Adv. Appl. Mech.
,
36
, pp.
163
253
.
17.
Przybyla
,
C.
,
Prasannavenkatesan
,
R.
,
Salajegheh
,
N.
, and
McDowell
,
D. L.
,
2010
, “
Microstructure-Sensitive Modeling of High Cycle Fatigue
,”
Int. J. Fatigue
,
32
(
3
), pp.
512
525
.
18.
Pineda
,
E. J.
,
Bednarcyk
,
B. A.
, and
Arnold
,
S. M.
,
2012
, “
Effects of Subscale Size and Shape on Global Energy Dissipation in a Multiscale Model of a Fiber-Reinforced Composite Exhibiting Post-Peak Strain Softening Using Abaqus and FEAMAC
,”
SIMULIA Customer Conference
, Providence, RI, May 15–17.
19.
Christensen
,
R.
, and
Waals
,
F.
,
1972
, “
Effective Stiffness of Randomly Oriented Fibre Composites
,”
J. Compos. Mater.
,
6
(
3
), pp.
518
532
.
20.
Timoshenko
,
S.
, and
Goodier
,
J.
,
1970
,
Theory of Elasticity
,
McGraw-Hill
, New York.
21.
Sutcu
,
M.
,
1992
, “
A Recursive Concentric Cylinder Model for Composites Containing Coated Fibers
,”
Int. J. Solids Struct.
,
29
(
2
), pp.
197
213
.
22.
Meyer
,
P.
, and
Waas
,
A. M.
,
2015
, “
Mesh-Objective Two-Scale Finite Element Analysis of Damage and Failure in Ceramic Matrix Composites
,”
Integr. Mater. Manuf. Innovation
,
4
, p.
5
.
You do not currently have access to this content.