In this research, we have employed molecular dynamics (MD) simulations to computationally explore the effects of hydrostatic stress on the shear deformation behavior of nanocrystalline (NC) Cu, over a range of grain size (5–20 nm) and temperature (10–500 K). Simulated nanocrystals were deformed under shear with superimposed isotropic tensile/compressive hydrostatic stress σ of magnitude up to 5 GPa. The results suggest that the shear strength increases under imposed compressive σ, and decreases under imposed tensile σ, by around 0.05–0.09 GPa for every GPa of imposed hydrostatic pressure. At 300 K, we computed activation volumes (3.5–9 b3) and activation energies (0.2–0.3 eV), with values agreeing with those reported in previous experimental and theoretical work, notwithstanding the extreme deformation rates imposed in MD simulations. Additionally, we observed that shear deformation under an imposed compressive hydrostatic stress tends to slightly increase both the activation volumes and the energy activation barrier. Finally, no discernible pressure effect could be observed on the distribution of inelastic shear strain.

References

1.
Karimpoor
,
A.
,
Erb
,
U.
,
Aust
,
K.
, and
Palumbo
,
G.
,
2003
, “
High Strength Nanocrystalline Cobalt With High Tensile Ductility
,”
Scr. Mater.
,
49
(
7
), pp.
651
656
.10.1016/S1359-6462(03)00397-X
2.
Youssef
,
K. M.
,
Scattergood
,
R. O.
,
Murty
,
K. L.
,
Horton
,
J. A.
, and
Koch
,
C. C.
,
2005
, “
Ultrahigh Strength and High Ductility of Bulk Nanocrystalline Copper
,”
Appl. Phys. Lett.
,
87
(
9
), p.
091904
.10.1063/1.2034122
3.
Suryanarayana
,
C.
,
1995
, “
Nanocrystalline Materials
,”
Int. Mater. Rev.
,
40
(
2
), pp.
41
64
.10.1179/imr.1995.40.2.41
4.
Guduru
,
R. K.
,
Murty
,
K. L.
,
Youssef
,
K. M.
,
Scattergood
,
R. O.
, and
Koch
,
C. C.
,
2007
, “
Mechanical Behavior of Nanocrystalline Copper
,”
Mater. Sci. Eng.: A
,
463
(
1–2
), pp.
14
21
.10.1016/j.msea.2006.07.165
5.
Padilla
,
H.
, II
, and
Boyce
,
B.
,
2010
, “
A Review of Fatigue Behavior in Nanocrystalline Metals
,”
Exp. Mech.
,
50
(
1
), pp.
5
23
.10.1007/s11340-009-9301-2
6.
Meyers
,
M.
,
Mishra
,
A.
, and
Benson
,
D.
,
2006
, “
Mechanical Properties of Nanocrystalline Materials
,”
Prog. Mater. Sci.
,
51
(
4
), pp.
427
556
.10.1016/j.pmatsci.2005.08.003
7.
Schuster
,
B. E.
,
Wei
,
Q.
,
Zhang
,
H.
, and
Ramesh
,
K. T.
,
2006
, “
Microcompression of Nanocrystalline Nickel
,”
Appl. Phys. Lett.
,
88
(
10
), p.
103112
.10.1063/1.2183814
8.
Shan
,
Z.
,
Stach
,
E. A.
,
Wiezorek
,
J. M. K.
,
Knapp
,
J. A.
,
Follstaedt
,
D. M.
, and
Mao
,
S. X.
,
2004
, “
Grain Boundary-Mediated Plasticity in Nanocrystalline Nickel
,”
Science
,
305
(
5684
), pp.
654
657
.10.1126/science.1098741
9.
Shan
,
Z.
, and
Mao
,
S. X.
,
2005
, “
Direct Evidence of a Deformation Mechanism Crossover in Nanocrystalline Nickel
,”
Adv. Eng. Mater.
,
7
(
7
), pp.
603
606
.10.1002/adem.200500034
10.
Schiotz
,
J.
,
Vegge
,
T.
,
Di Tolla
,
F. D.
, and
Jacobsen
,
K. W.
,
1999
, “
Atomic-Scale Simulations of the Mechanical Deformation of Nanocrystalline Metals
,”
Phys. Rev. B
,
60
(
17
), pp.
11971
11983
.10.1103/PhysRevB.60.11971
11.
Brandstetter
,
S.
,
Budrović
,
Ž.
,
Van Petegem
,
S.
,
Schmitt
,
B.
,
Stergar
,
E.
,
Derlet
,
P. M.
, and
Van Swygenhoven
,
H.
,
2005
, “
Temperature-Dependent Residual Broadening of X-Ray Diffraction Spectra in Nanocrystalline Plasticity
,”
Appl. Phys. Lett.
,
87
(
23
), p.
231910
.10.1063/1.2138359
12.
Van Swygenhoven
,
H.
,
Derlet
,
P.
, and
Froseth
,
A.
,
2006
, “
Nucleation and Propagation of Dislocations in Nanocrystalline fcc Metals
,”
Acta Mater.
,
54
(
7
), pp.
1975
1983
.10.1016/j.actamat.2005.12.026
13.
Bitzek
,
E.
,
Derlet
,
P.
,
Anderson
,
P.
, and
Van Swygenhoven
,
H.
,
2008
, “
The Stress–Strain Response of Nanocrystalline Metals: A Statistical Analysis of Atomistic Simulations
,”
Acta Mater.
,
56
(
17
), pp.
4846
4857
.10.1016/j.actamat.2008.05.043
14.
Lund
,
A.
, and
Schuh
,
C.
,
2005
, “
Strength Asymmetry in Nanocrystalline Metals Under Multiaxial Loading
,”
Acta Mater.
,
53
(
11
), pp.
3193
3205
.10.1016/j.actamat.2005.03.023
15.
Tschopp
,
M. A.
,
Spearot
,
D. E.
, and
McDowell
,
D. L.
,
2008
, “
Influence of Grain Boundary Structure on Dislocation Nucleation in FCC Metals
,”
A Tribute to F.R.N. Nabarro
(Dislocations in Solids, Vol.
14
),
J.
Hirth
, ed.,
Elsevier
,
Oxford, UK
, pp.
43
139
.
16.
Spearot
,
D. E.
,
Tschopp
,
M. A.
,
Jacob
,
K. I.
, and
McDowell
,
D. L.
,
2007
, “
Tensile Strength of 100 and 110 Tilt Bicrystal Copper Interfaces
,”
Acta Mater.
,
55
(
2
), pp.
705
714
.10.1016/j.actamat.2006.08.060
17.
Gurses
,
E.
, and
El Sayed
,
T.
,
2010
, “
On Tension–Compression Asymmetry in Ultrafine-Grained and Nanocrystalline Metals
,”
Comput. Mater. Sci.
,
50
(
2
), pp.
639
644
.10.1016/j.commatsci.2010.09.028
18.
Dongare
,
A. M.
,
Rajendran
,
A. M.
,
LaMattina
,
B.
,
Zikry
,
M. A.
, and
Brenner
,
D. W.
,
2010
, “
Tension–Compression Asymmetry in Nanocrystalline Cu: High Strain Rate vs. Quasi-Static Deformation
,”
Comput. Mater. Sci.
,
49
(
2
), pp.
260
265
.10.1016/j.commatsci.2010.05.004
19.
Tucker
,
G. J.
,
Tiwari
,
S.
,
Zimmerman
,
J. A.
, and
McDowell
,
D. L.
,
2012
, “
Investigating the Deformation of Nanocrystalline Copper With Microscale Kinematic Metrics and Molecular Dynamics
,”
J. Mech. Phys. Solids
,
60
(
3
), pp.
471
486
.10.1016/j.jmps.2011.11.007
20.
Tiwari
,
S.
,
Tucker
,
G. J.
, and
McDowell
,
D. L.
,
2013
, “
Simulated Defect Growth Avalanches During Deformation of Nanocrystalline Copper
,”
Philos. Mag.
,
93
(
5
), pp.
478
498
.10.1080/14786435.2012.722236
21.
Parrinello
,
M.
, and
Rahman
,
A.
,
1980
, “
Crystal Structure and Pair Potentials: A Molecular-Dynamics Study
,”
Phys. Rev. Lett.
,
45
(
14
), pp.
1196
1199
.10.1103/PhysRevLett.45.1196
22.
Plimpton, S., Thompson, A., Crozier, P., and Kohlmeyer, A.,
2014
, “
LAMMPS Molecular Dynamics Simulator
,” Sandia National Laboratories, Albuquerque, NM, http://lammps.sandia.gov/
23.
Mishin
,
Y.
,
Mehl
,
M. J.
,
Papaconstantopoulos
,
D. A.
,
Voter
,
A. F.
, and
Kress
,
J. D.
,
2001
, “
Structural Stability and Lattice Defects in Copper: Ab Initio, Tight-Binding, and Embedded-Atom Calculations
,”
Phys. Rev. B
,
63
(
22
), p.
224106
.10.1103/PhysRevB.63.224106
24.
Clausius
,
R.
,
1870
, “
On a Mechanical Theorem Applicable to Heat
,”
Philos. Mag.
,
40
(
265
), pp.
122
127
.10.1080/14786447008640370
25.
Tsai
,
D.
,
1979
, “
The Virial Theorem and Stress Calculation in Molecular Dynamics
,”
J. Chem. Phys.
,
70
(
3
), pp.
1375
1382
.10.1063/1.437577
26.
Kelchner
,
C. L.
,
Plimpton
,
S. J.
, and
Hamilton
,
J. C.
,
1998
, “
Dislocation Nucleation and Defect Structure During Surface Indentation
,”
Phys. Rev. B
,
58
(
17
), pp.
11085
11088
.10.1103/PhysRevB.58.11085
27.
Tsuzuki
,
H.
,
Branicio
,
P. S.
, and
Rino
,
J. P.
,
2007
, “
Structural Characterization of Deformed Crystals by Analysis of Common Atomic Neighborhood
,”
Comput. Phys. Commun.
,
177
(
6
), pp.
518
523
.10.1016/j.cpc.2007.05.018
28.
Spearot
,
D. E.
,
2005
, “
Atomistic Calculations of Nanoscale Interface Behavior in FCC Metals
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
29.
Rice
,
J.
,
1992
, “
Dislocation Nucleation From a Crack Tip: An Analysis Based on the Peierls Concept
,”
J. Mech. Phys. Solids
,
40
(
2
), pp.
239
271
.10.1016/S0022-5096(05)80012-2
30.
Van Swygenhoven
,
H.
,
Derlet
,
P. M.
, and
Froseth
,
A. G.
,
2004
, “
Stacking Fault Energies and Slip in Nanocrystalline Metals
,”
Nat. Mater.
,
3
(
6
), pp.
399
403
.10.1038/nmat1136
31.
Zimmerman
,
J. A.
,
Gao
,
H.
, and
Abraham
,
F. F.
,
2000
, “
Generalized Stacking Fault Energies for Embedded Atom FCC Metals
,”
Modell. Simul. Mater. Sci. Eng.
,
8
(
2
), pp.
103
116
.10.1088/0965-0393/8/2/302
32.
Tschopp
,
M. A.
, and
McDowell
,
D. L.
,
2008
, “
Influence of Single Crystal Orientation on Homogeneous Dislocation Nucleation Under Uniaxial Loading
,”
J. Mech. Phys. Solids
,
56
(
5
), pp.
1806
1830
.10.1016/j.jmps.2007.11.012
33.
Li
,
L.
,
Anderson
,
P. M.
,
Lee
,
M.-G.
,
Bitzek
,
E.
,
Derlet
,
P.
, and
Swygenhoven
,
H. V.
,
2009
, “
The Stress–Strain Response of Nanocrystalline Metals: A Quantized Crystal Plasticity Approach
,”
Acta Mater.
,
57
(
3
), pp.
812
822
.10.1016/j.actamat.2008.10.035
34.
Zhu
,
T.
,
Li
,
J.
,
Samanta
,
A.
,
Leach
,
A.
, and
Gall
,
K.
,
2008
, “
Temperature and Strain-Rate Dependence of Surface Dislocation Nucleation
,”
Phys. Rev. Lett.
,
100
(
2
), p.
025502
.10.1103/PhysRevLett.100.025502
35.
Kogure
,
Y.
,
Kosugi
,
T.
,
Doyama
,
M.
, and
Kaburaki
,
H.
,
2006
, “
Simulation of Mechanical Response of Point Defects in Copper
,”
Mater. Sci. Eng.: A
,
442
(
1
), pp.
71
74
.10.1016/j.msea.2006.03.120
36.
Asaro
,
R. J.
, and
Suresh
,
S.
,
2005
, “
Mechanistic Models for the Activation Volume and Rate Sensitivity in Metals With Nanocrystalline Grains and Nano-Scale Twins
,”
Acta Mater.
,
53
(
12
), pp.
3369
3382
.10.1016/j.actamat.2005.03.047
37.
Gu
,
P.
,
Dao
,
M.
,
Asaro
,
R. J.
, and
Suresh
,
S.
,
2011
, “
A Unified Mechanistic Model for Size-Dependent Deformation in Nanocrystalline and Nanotwinned Metals
,”
Acta Mater.
,
59
(
18
), pp.
6861
6868
.10.1016/j.actamat.2011.07.019
38.
Wang
,
Y.
,
Hamza
,
A.
, and
Ma
,
E.
,
2006
, “
Temperature-Dependent Strain Rate Sensitivity and Activation Volume of Nanocrystalline Ni
,”
Acta Mater.
,
54
(
10
), pp.
2715
2726
.10.1016/j.actamat.2006.02.013
39.
Grewer
,
M.
, and
Birringer
,
R.
,
2014
, “
Shear Shuffling Governs Plastic Flow in Nanocrystalline Metals: An Analysis of Thermal Activation Parameters
,”
Phys. Rev. B
,
89
(
18
), p.
184108
.10.1103/PhysRevB.89.184108
40.
Zimmerman
,
J. A.
,
Bammann
,
D. J.
, and
Gao
,
H.
,
2009
, “
Deformation Gradients for Continuum Mechanical Analysis of Atomistic Simulations
,”
Int. J. Solids Struct.
,
46
(
2
), pp.
238
253
.10.1016/j.ijsolstr.2008.08.036
41.
Tucker
,
G. J.
,
Zimmerman
,
J. A.
, and
McDowell
,
D. L.
,
2010
, “
Shear Deformation Kinematics of Bicrystalline Grain Boundaries in Atomistic Simulations
,”
Modell. Simul. Mater. Sci. Eng.
,
18
(
1
), p.
015002
.10.1088/0965-0393/18/1/015002
42.
Stukowski
,
A.
, and
Arsenlis
,
A.
,
2012
, “
On the Elastic–Plastic Decomposition of Crystal Deformation at the Atomic Scale
,”
Modell. Simul. Mater. Sci. Eng.
,
20
(
3
), p.
035012
.10.1088/0965-0393/20/3/035012
43.
Capolungo
,
L.
,
Cherkaoui
,
M.
, and
Qu
,
J.
,
2007
, “
On the Elastic–Viscoplastic Behavior of Nanocrystalline Materials
,”
Int. J. Plast.
,
23
(
4
), pp.
561
591
.10.1016/j.ijplas.2006.05.003
44.
Wei
,
Y.
, and
Anand
,
L.
,
2004
, “
Grain-Boundary Sliding and Separation in Polycrystalline Metals: Application to Nanocrystalline fcc Metals
,”
J. Mech. Phys. Solids
,
52
(
11
), pp.
2587
2616
.10.1016/j.jmps.2004.04.006
45.
Henkelman
,
G.
,
Uberuaga
,
B. P.
, and
Jónsson
,
H.
,
2000
, “
A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths
,”
J. Chem. Phys.
,
113
(
22
), pp.
9901
9904
.10.1063/1.1329672
You do not currently have access to this content.