In this paper, we investigated the temperature-dependent viscoelastic behavior of dielectric elastomers (DEs) and the effects of viscoelasticity on the electro-actuation behavior. We performed dynamic thermomechanical analysis to measure the master curve of the stress relaxation function and the temperature dependence of the relaxation time of VHB 4905, a commonly used DE. The master curve was applied to calculate the viscoelastic spectrum for a discrete multiprocess finite deformation viscoelastic model. In addition, we performed uniaxial creep and stress relaxation experiments and electrical actuation experiments under different prestretch conditions. The measured spectrum was applied to predict the experimental results. Generally, the model produced good quantitative agreement with both the viscoelastic and electro-actuation experiments, which shows the necessity of using a multiprocess relaxation model to accurately capture the viscoelastic response for VHB. However, the model underpredicted the electro-actuated creep strain for high voltages near the pull-in instability. We attributed the discrepancies to the complex boundary conditions that were not taken into account in the simulation. We also investigated the failure of VHB membrane caused by viscoelastic creep when prestretched and subjected to constant voltage loading. The experimental time to failure for the specimens decreased exponentially with voltage, which agreed well with the predictions of the model.

References

1.
Brochu
,
P.
, and
Pei
,
Q.
,
2010
, “
Advances in Dielectric Elastomers for Actuators and Artificial Muscles
,”
Macromol. Rapid Commun.
,
31
(
1
), pp.
10
36
.10.1002/marc.200900425
2.
Anderson
,
I. A.
,
Gisby
,
T. A.
,
McKay
,
T. G.
,
O'Brien
,
B. M.
, and
Calius
,
E. P.
,
2012
, “
Multi-Functional Dielectric Elastomer Artificial Muscles for Soft and Smart Machines
,”
J. Appl. Phys.
,
112
(
4
), p.
041101
.10.1063/1.4740023
3.
Pelrine
,
R.
,
Kornbluh
,
R.
,
Pei
,
Q.
, and
Joseph
,
J.
,
2000
, “
High-Speed Electrically Actuated Elastomers With Strain Greater Than 100%
,”
Science
,
287
(
5454
), pp.
836
839
.10.1126/science.287.5454.836
4.
Pelrine
,
R.
,
Kornbluh
,
R. D.
,
Pei
,
Q.
,
Stanford
,
S.
,
Oh
,
S.
,
Eckerle
,
J.
,
Full
,
R. J.
,
Rosenthal
,
M. A.
, and
Meijer
,
K.
,
2002
, “
Dielectric Elastomer Artificial Muscle Actuators: Toward Biomimetic Motion
,”
Proc. SPIE
,
4695
, pp.
126
137
.10.1117/12.475157
5.
Bar-Cohen
,
Y.
,
2004
,
Electroactive Polymer (EAP) Actuators as Artificial Muscles
,
SPIE Press
,
New York
.
6.
O'Halloran
,
A.
,
O'Malley
,
F.
, and
McHugh
,
P.
,
2008
, “
A Review on Dielectric Elastomer Actuators, Technology, Applications, and Challenges
,”
J. Appl. Phys.
,
104
(
7
), p.
071101
.10.1063/1.2981642
7.
Biddiss
,
E.
, and
Chau
,
T.
,
2008
, “
Dielectric Elastomers as Actuators for Upper Limb Prosthetics: Challenges and Opportunities
,”
Med. Eng. Phys.
,
30
(
4
), pp.
403
418
.10.1016/j.medengphy.2007.05.011
8.
Ha
,
S. M.
,
Yuan
,
W.
,
Pei
,
Q.
,
Pelrine
,
R.
, and
Stanford
,
S.
,
2006
, “
Interpenetrating Polymer Networks for High-Performance Electroelastomer Artificial Muscles
,”
Adv. Mater.
,
18
(
7
), pp.
887
891
.10.1002/adma.200502437
9.
Pelrine
,
R.
,
Kornbluh
,
R. D.
,
Eckerle
,
J.
,
Jeuck
,
P.
,
Oh
,
S.
,
Pei
,
Q.
, and
Stanford
,
S.
,
2001
, “
Dielectric Elastomers: Generator Mode Fundamentals and Applications
,”
Proc. SPIE
,
4329
, pp.
148
156
.10.1117/12.432640
10.
Koh
,
S. J. A.
,
Zhao
,
X.
, and
Suo
,
Z.
,
2009
, “
Maximal Energy That Can be Converted by a Dielectric Elastomer Generator
,”
Appl. Phys. Lett.
,
94
(
26
), p.
262902
.10.1063/1.3167773
11.
Beck
,
M.
,
Fiolka
,
R.
, and
Stemmer
,
A.
,
2009
, “
Variable Phase Retarder Made of a Dielectric Elastomer Actuator
,”
Opt. Lett.
,
34
(
6
), pp.
803
805
.10.1364/OL.34.000803
12.
Kofod
,
G.
,
Mc Carthy
,
D. N.
,
Krissler
,
J.
,
Lang
,
G.
, and
Jordan
,
G.
,
2009
, “
Electroelastic Optical Fiber Positioning With Submicrometer Accuracy: Model and Experiment
,”
Appl. Phys. Lett.
,
94
(
20
), p.
202901
.10.1063/1.3134002
13.
Keplinger
,
C.
,
Kaltenbrunner
,
M.
,
Arnold
,
N.
, and
Bauer
,
S.
,
2010
, “
Röntgen's Electrode-Free Elastomer Actuators Without Electromechanical Pull-In Instability
,”
Proc. Natl. Acad. Sci.
,
107
(
10
), pp.
4505
4510
.10.1073/pnas.0913461107
14.
Bar-Cohen
,
Y.
,
2009
, “
Electroactive Polymers for Refreshable Braille Displays
,”
SPIE
Newsroom (epub).10.1117/2.1200909.1738
15.
Carpi
,
F.
,
Frediani
,
G.
, and
De Rossi
,
D.
,
2009
, “
Electroactive Elastomeric Haptic Displays of Organ Motility and Tissue Compliance for Medical Training and Surgical Force Feedback
,”
IEEE Trans. Biomed. Eng.
,
56
(
9
), pp.
2327
2330
.10.1109/TBME.2009.2024691
16.
Carpi
,
F.
,
Frediani
,
G.
, and
De Rossi
,
D.
,
2010
, “
Hydrostatically Coupled Dielectric Elastomer Actuators for Tactile Displays and Cutaneous Stimulators
,”
Proc. SPIE
,
7642
, p.
76420E
.10.1117/12.847562
17.
Plante
,
J.-S.
, and
Dubowsky
,
S.
,
2006
, “
Large-Scale Failure Modes of Dielectric Elastomer Actuators
,”
Int. J. Solids Struct.
,
43
(
25
), pp.
7727
7751
.10.1016/j.ijsolstr.2006.03.026
18.
Koh
,
S. J. A.
,
Li
,
T.
,
Zhou
,
J.
,
Zhao
,
X.
,
Hong
,
W.
,
Zhu
,
J.
, and
Suo
,
Z.
,
2011
, “
Mechanisms of Large Actuation Strain in Dielectric Elastomers
,”
J. Polym. Sci., Part B: Polym. Phys.
,
49
(
7
), pp.
504
515
.10.1002/polb.22223
19.
Kofod
,
G.
,
Sommer-Larsen
,
P.
,
Kornbluh
,
R.
, and
Pelrine
,
R.
,
2003
, “
Actuation Response of Polyacrylate Dielectric Elastomers
,”
J. Intell. Mater. Syst. Struct.
,
14
(
12
), pp.
787
793
.10.1177/104538903039260
20.
Kofod
,
G.
,
2008
, “
The Static Actuation of Dielectric Elastomer Actuators: How Does Pre-Stretch Improve Actuation?
,”
J. Phys. D: Appl. Phys.
,
41
(
21
), p.
215405
.10.1088/0022-3727/41/21/215405
21.
Suo
,
Z.
,
Zhao
,
X.
, and
Greene
,
W. H.
,
2008
, “
A Nonlinear Field Theory of Deformable Dielectrics
,”
J. Mech. Phys. Solids
,
56
(
2
), pp.
467
486
.10.1016/j.jmps.2007.05.021
22.
Lu
,
T.
,
Huang
,
J.
,
Jordi
,
C.
,
Kovacs
,
G.
,
Huang
,
R.
,
Clarke
,
D. R.
, and
Suo
,
Z.
,
2012
, “
Dielectric Elastomer Actuators Under Equal-Biaxial Forces, Uniaxial Forces, and Uniaxial Constraint of Stiff Fibers
,”
Soft Matter
,
8
(
22
), pp.
6167
6173
.10.1039/c2sm25692d
23.
Goulbourne
,
N.
,
Mockensturm
,
E.
, and
Frecker
,
M.
,
2005
, “
A Nonlinear Model for Dielectric Elastomer Membranes
,”
ASME J. Appl. Mech.
,
72
(
6
), pp.
899
906
.10.1115/1.2047597
24.
McMeeking
,
R. M.
, and
Landis
,
C. M.
,
2005
, “
Electrostatic Forces and Stored Energy for Deformable Dielectric Materials
,”
ASME J. Appl. Mech.
,
72
(
4
), pp.
581
590
.10.1115/1.1940661
25.
Jhong
,
Y.-Y.
,
Huang
,
C.-M.
,
Hsieh
,
C.-C.
, and
Fu
,
C.-C.
,
2007
, “
Improvement of Viscoelastic Effects of Dielectric Elastomer Actuator and Its Application for Valve Devices
,”
Proc. SPIE
,
6524
, p.
65241Y
.10.1117/12.715998
26.
Palakodeti
,
R.
, and
Kessler
,
M.
,
2006
, “
Influence of Frequency and Prestrain on the Mechanical Efficiency of Dielectric Electroactive Polymer Actuators
,”
Mater. Lett.
,
60
(
29
), pp.
3437
3440
.10.1016/j.matlet.2006.03.053
27.
Keplinger
,
C.
,
Kaltenbrunner
,
M.
,
Arnold
,
N.
, and
Bauer
,
S.
,
2008
, “
Capacitive Extensometry for Transient Strain Analysis of Dielectric Elastomer Actuators
,”
Appl. Phys. Lett.
,
92
(
19
), p.
192903
.10.1063/1.2929383
28.
Zhang
,
J.
, and
Chen
,
H.
,
2014
, “
Electromechanical Performance of a Viscoelastic Dielectric Elastomer Balloon
,”
Int. J. Smart Nano Mater.
,
5
(
2
), pp.
76
85
.10.1080/19475411.2014.893930
29.
Zhao
,
X.
,
Koh
,
S. J. A.
, and
Suo
,
Z.
,
2011
, “
Nonequilibrium Thermodynamics of Dielectric Elastomers
,”
Int. J. Appl. Mech.
,
3
(
02
), pp.
203
217
.10.1142/S1758825111000944
30.
Park
,
H. S.
, and
Nguyen
,
T. D.
,
2013
, “
Viscoelastic Effects on Electromechanical Instabilities in Dielectric Elastomers
,”
Soft Matter
,
9
(
4
), pp.
1031
1042
.10.1039/C2SM27375F
31.
Wang
,
J.
,
Nguyen
,
T. D.
, and
Park
,
H. S.
,
2014
, “
Electrostatically Driven Creep in Viscoelastic Dielectric Elastomers
,”
ASME J. Appl. Mech.
,
81
(
5
), p.
051006
.10.1115/1.4025999
32.
Lochmatter
,
P.
,
Kovacs
,
G.
, and
Wissler
,
M.
,
2007
, “
Characterization of Dielectric Elastomer Actuators Based on a Visco-Hyperelastic Film Model
,”
Smart Mater. Struct.
,
16
(
2
), pp.
477
486
.10.1088/0964-1726/16/2/028
33.
Yang
,
E.
,
Frecker
,
M.
, and
Mockensturm
,
E.
,
2005
, “
Viscoelastic Model of Dielectric Elastomer Membranes
,”
Proc. SPIE
,
5759
, pp.
82
93
.10.1117/12.600289
34.
Wissler
,
M.
, and
Mazza
,
E.
,
2007
, “
Mechanical Behavior of an Acrylic Elastomer Used in Dielectric Elastomer Actuators
,”
Sens. Actuators, A
,
134
(
2
), pp.
494
504
.10.1016/j.sna.2006.05.024
35.
Kollosche
,
M.
,
Kofod
,
G.
,
Suo
,
Z.
, and
Zhu
,
J.
,
2015
, “
Temporal Evolution and Instability in a Viscoelastic Dielectric Elastomer
,”
J. Mech. Phys. Solids
,
76
, pp.
47
64
.10.1016/j.jmps.2014.11.013
36.
Wissler
,
M.
, and
Mazza
,
E.
,
2005
, “
Modeling and Simulation of Dielectric Elastomer Actuators
,”
Smart Mater. Struct.
,
14
(
6
), pp.
1396
1402
.10.1088/0964-1726/14/6/032
37.
Michel
,
S.
,
Zhang
,
X. Q.
,
Wissler
,
M.
,
Löwe
,
C.
, and
Kovacs
,
G.
,
2010
, “
A Comparison Between Silicone and Acrylic Elastomers as Dielectric Materials in Electroactive Polymer Actuators
,”
Polym. Int.
,
59
(
3
), pp.
391
399
.10.1002/pi.2751
38.
Suo
,
Z.
,
2010
, “
Theory of Dielectric Elastomers
,”
Acta Mech. Solida Sin.
,
23
(
6
), pp.
549
578
.10.1016/S0894-9166(11)60004-9
39.
He
,
T.
,
Zhao
,
X.
, and
Suo
,
Z.
,
2009
, “
Dielectric Elastomer Membranes Undergoing Inhomogeneous Deformation
,”
J. Appl. Phys.
,
106
(
8
), p.
083522
.10.1063/1.3253322
40.
Leng
,
J.
,
Liu
,
L.
,
Liu
,
Y.
,
Yu
,
K.
, and
Sun
,
S.
,
2009
, “
Electromechanical Stability of Dielectric Elastomer
,”
Appl. Phys. Lett.
,
94
(
21
), p.
211901
.10.1063/1.3138153
41.
Gent
,
A.
,
1996
, “
A New Constitutive Relation for Rubber
,”
Rubber Chem. Technol.
,
69
(
1
), pp.
59
61
.10.5254/1.3538357
42.
Reese
,
S.
, and
Govindjee
,
S.
,
1998
, “
A Theory of Finite Viscoelasticity and Numerical Aspects
,”
Int. J. Solids Struct.
,
35
(
26–27
), pp.
3455
3482
.10.1016/S0020-7683(97)00217-5
43.
Schwarzl
,
F.
, and
Staverman
,
A.
,
1953
, “
Higher Approximation Methods for the Relaxation Spectrum From Static and Dynamic Measurements of Visco-Elastic Materials
,”
Appl. Sci. Res., Sect. A
,
4
(
2
), pp.
127
141
.10.1007/BF03184944
44.
Xiao
,
R.
,
Guo
,
J.
, and
Nguyen
,
T. D.
,
2015
, “
Modeling the Multiple Shape Memory Effect and Temperature Memory Effect in Amorphous Polymers
,”
RSC Adv.
,
5
(
1
), pp.
416
423
.10.1039/C4RA11412D
45.
Ferry
,
J. D.
,
1980
,
Viscoelastic Properties of Polymers
,
Wiley
,
New York
.
46.
Nguyen
,
T. D.
,
Yakacki
,
C. M.
,
Brahmbhatt
,
P. D.
, and
Chambers
,
M. L.
,
2010
, “
Modeling the Relaxation Mechanisms of Amorphous Shape Memory Polymers
,”
Adv. Mater.
,
22
(
31
), pp.
3411
3423
.10.1002/adma.200904119
47.
Haupt
,
P.
,
Lion
,
A.
, and
Backhaus
,
E.
,
2000
, “
On the Dynamic Behaviour of Polymers Under Finite Strains: Constitutive Modelling and Identification of Parameters
,”
Int. J. Solids Struct.
,
37
(
26
), pp.
3633
3646
.10.1016/S0020-7683(99)00165-1
48.
Foo
,
C. C.
,
Cai
,
S.
,
Koh
,
S. J. A.
,
Bauer
,
S.
, and
Suo
,
Z.
,
2012
, “
Model of Dissipative Dielectric Elastomers
,”
J. Appl. Phys.
,
111
(
3
), p.
034102
.10.1063/1.3680878
You do not currently have access to this content.