In this paper, we combine recent developments in modeling of fatigue-damage, isogeometric analysis (IGA) of thin-shell structures, and structural health monitoring (SHM) to develop a computational steering framework for fatigue-damage prediction in full-scale laminated composite structures. The main constituents of the proposed framework are described in detail, and the framework is deployed in the context of an actual fatigue test of a full-scale wind-turbine blade structure. The results indicate that using an advanced computational model informed by in situ SHM data leads to accurate prediction of the damage zone formation, damage progression, and eventual failure of the structure. Although the blade fatigue simulation was driven by test data obtained prior to the computation, the proposed computational steering framework may be deployed concurrently with structures undergoing fatigue loading.

References

1.
Darema
,
F.
,
2004
, “
Dynamic Data Driven Applications Systems: A New Paradigm for Application Simulations and Measurements
,”
4th International Conference on Computational Science
(
ICCS'04
), Krakow, Poland, June 6–9, pp.
662
669
.10.1007/978-3-540-24688-6_86
2.
Bazilevs
,
Y.
,
Marsden
,
A.
,
di Scalea
,
F. L.
,
Majumdar
,
A.
, and
Tatineni
,
M.
,
2012
, “
Toward a Computational Steering Framework for Large-Scale Composite Structures Based on Continually and Dynamically Injected Sensor Data
,”
Procedia Comput. Sci.
,
9
, pp.
1149
1158
.10.1016/j.procs.2012.04.124
3.
Andrianarison
,
O.
, and
Ohayon
,
R.
,
2006
, “
Reduced Models for Modal Analysis of Fluid–Structure Systems Taking Into Account Compressibility and Gravity Effects
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
41
), pp.
5656
5672
.10.1016/j.cma.2005.11.013
4.
Ohayon
,
R.
,
2001
, “
Reduced Symmetric Models for Modal Analysis of Internal Structural-Acoustic and Hydroelastic-Sloshing Systems
,”
Comput. Methods Appl. Mech. Eng.
,
190
(24–25), pp.
3009
3019
.10.1016/S0045-7825(00)00379-0
5.
Degrieck
,
J.
, and
Paepegem
,
W. V.
,
2001
, “
Fatigue Damage Modelling of Fiber-Reinforced Composite Materials: Review
,”
ASME Appl. Mech. Rev.
,
54
(
4
), pp.
279
300
.10.1115/1.1381395
6.
Fong
,
J. T.
,
1982
, “
What is Fatigue Damage
,”
Damage in Composite Materials
,
American Society for Testing and Materials
,
West Conshohocken, PA
.
7.
Deng
,
X.
,
Korobenko
,
A.
,
Yan
,
J.
, and
Bazilevs
,
Y.
,
2015
, “
Isogeometric Analysis of Continuum Damage in Rotation-Free Composite Shells
,”
Comput. Methods Appl. Mech. Eng.
,
284
, pp.
349
372
.10.1016/j.cma.2014.09.015
8.
Raghavan
,
P.
,
Li
,
S.
, and
Ghosh
,
S.
,
2004
, “
Two Scale Response and Damage Modeling of Composite Materials
,”
Finite Elem. Anal. Des.
,
40
(
12
), pp.
1619
1640
.10.1016/j.finel.2003.11.003
9.
Swaminathan
,
S.
,
Ghosh
,
S.
, and
Pagano
,
N. J.
,
2006
, “
Statistically Equivalent Representative Volume Elements for Composite Microstructures. Part I: Without Damage
,”
J. Compos. Mater.
,
40
(
7
), pp.
583
604
.10.1177/0021998305055273
10.
Swaminathan
,
S.
, and
Ghosh
,
S.
,
2006
, “
Statistically Equivalent Representative Volume Elements for Composite Microstructures. Part II: With Evolving Damage
,”
J. Compos. Mater.
,
40
(
7
), pp.
605
621
.10.1177/0021998305055274
11.
Sendeckyj
,
G. P.
,
1990
, “
Life Prediction for Resin-Matrix Composite Materials
,”
Fatigue of Composite Materials
,
Elsevier
,
New York
, Chap. 10.
12.
Paepegem
,
W. V.
, and
Degrieck
,
J.
,
2004
, “
Simulating In-Plane Fatigue Damage in Woven Glass Fibre-Reinforced Composites Subject to Fully Reversed Cyclic Loading
,”
Fatigue Fract. Eng. Mater. Struct.
,
27
(
12
), pp.
1197
1208
.10.1111/j.1460-2695.2004.00851.x
13.
Paepegem
,
W. V.
, and
Degrieck
,
J.
,
2002
, “
A New Coupled Approach of Residual Stiffness and Strength for Fatigue of Fiber-Reinforced Composites
,”
Int. J. Fatigue
,
24
(
7
), pp.
747
762
.10.1016/S0142-1123(01)00194-3
14.
Kiendl
,
J.
,
Bletzinger
,
K.-U.
,
Linhard
,
J.
, and
Wüchner
,
R.
,
2009
, “
Isogeometric Shell Analysis With Kirchhoff–Love Elements
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
49
), pp.
3902
3914
.10.1016/j.cma.2009.08.013
15.
Kiendl
,
J.
,
Bazilevs
,
Y.
,
Hsu
,
M.-C.
,
Wüchner
,
R.
, and
Bletzinger
,
K.-U.
,
2010
, “
The Bending Strip Method for Isogeometric Analysis of Kirchhoff–Love Shell Structures Comprised of Multiple Patches
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
37
), pp.
2403
2416
.10.1016/j.cma.2010.03.029
16.
Benson
,
D. J.
,
Bazilevs
,
Y.
,
Hsu
,
M.-C.
, and
Hughes
,
T. J. R.
,
2010
, “
Isogeometric Shell Analysis: The Reissner–Mindlin Shell
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
5–8
), pp.
276
289
.10.1016/j.cma.2009.05.011
17.
Benson
,
D. J.
,
Bazilevs
,
Y.
,
Hsu
,
M.-C.
, and
Hughes
,
T. J. R.
,
2011
, “
A Large Deformation, Rotation-Free, Isogeometric Shell
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
13–16
), pp.
1367
1378
.10.1016/j.cma.2010.12.003
18.
Benson
,
D. J.
,
Hartmann
,
S.
,
Bazilevs
,
Y.
,
Hsu
,
M.-C.
, and
Hughes
,
T.
,
2013
, “
Blended Isogeometric Shells
,”
Comput. Methods Appl. Mech. Eng.
,
255
, pp.
133
146
.10.1016/j.cma.2012.11.020
19.
Echter
,
R.
,
Oesterle
,
B.
, and
Bischoff
,
M.
,
2013
, “
A Hierarchic Family of Isogeometric Shell Finite Elements
,”
Comput. Methods Appl. Mech. Eng.
,
254
, pp.
170
180
.10.1016/j.cma.2012.10.018
20.
Bazilevs
,
Y.
,
Hsu
,
M.-C.
,
Kiendl
,
J.
,
Wüchner
,
R.
, and
Bletzinger
,
K.-U.
,
2011
, “
3D Simulation of Wind Turbine Rotors at Full Scale. Part II: Fluid–Structure Interaction Modeling With Composite Blades
,”
Int. J. Numer. Methods Fluids
,
65
(
1–3
), pp.
236
253
.10.1002/fld.2454
21.
Bazilevs
,
Y.
,
Hsu
,
M.-C.
,
Kiendl
,
J.
, and
Benson
,
D. J.
,
2012
, “
A Computational Procedure for Prebending of Wind Turbine Blades
,”
Int. J. Numer. Methods Eng.
,
89
(
3
), pp.
323
336
.10.1002/nme.3244
22.
Farinholt
,
K.
,
Taylor
,
S.
,
Park
,
G.
, and
Ammerman
,
C.
,
2012
, “
Full-Scale Fatigue Tests of CX-100 Wind Turbine Blades. Part I: Testing
,”
Proc. SPIE
,
8343
, p.
83430P
.10.1117/12.917493
23.
Taylor
,
S.
,
Jeong
,
H.
,
Jang
,
J.
,
Park
,
G.
,
Farinholt
,
K.
,
Todd
,
M.
, and
Ammerman
,
C.
,
2012
, “
Full-Scale Fatigue Tests of CX-100 Wind Turbine Blades. Part II: Analysis
,”
Proc. SPIE
,
8343
, p.
83430Q
.10.1117/12.917497
24.
Taylor
,
S.
,
Farinholt
,
K.
,
Jeong
,
H.
,
Jang
,
J.
,
Park
,
G.
,
Todd
,
M.
,
Farrar
,
C.
, and
Ammerman
,
C.
,
2012
, “
Wind Turbine Blade Fatigue Tests: Lessons Learned and Application to SHM System Development
,”
6th European Workshop on Structural Health Monitoring
,
Dresden
,
Germany
, July 3–6, pp.
1324
1334
.
25.
Taylor
,
S.
,
Park
,
G.
,
Farinholt
,
K.
, and
Todd
,
M.
,
2013
, “
Fatigue Crack Detection Performance Comparison in a Composite Wind Turbine Rotor Blade
,”
Struct. Health Monit.
,
12
(
3
), pp.
252
262
.10.1177/1475921712471414
26.
Hughes
,
T. J. R.
,
Cottrell
,
J. A.
, and
Bazilevs
,
Y.
,
2005
, “
Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry, and Mesh Refinement
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
39–41
), pp.
4135
4195
.10.1016/j.cma.2004.10.008
27.
Cottrell
,
J. A.
,
Hughes
,
T. J. R.
, and
Bazilevs
,
Y.
,
2009
,
Isogeometric Analysis: Toward Integration of CAD and FEA
,
Wiley, Chichester
,
UK
.
28.
Bazilevs
,
Y.
,
da Veiga
,
L. B.
,
Cottrell
,
J. A.
,
Hughes
,
T. J. R.
, and
Sangalli
,
G.
,
2006
, “
Isogeometric Analysis: Approximation, Stability and Error Estimates for h-Refined Meshes
,”
Math. Models Methods Appl. Sci.
,
16
(
7
), pp.
1031
1090
.10.1142/S0218202506001455
29.
Piegl
,
L.
, and
Tiller
,
W.
,
1997
,
The NURBS Book (Monographs in Visual Communication)
, 2nd ed.,
Springer
,
New York
.
30.
Sederberg
,
T. W.
,
Cardon
,
D.
,
Finnigan
,
G.
,
North
,
N.
,
Zheng
,
J.
, and
Lyche
,
T.
,
2004
, “
T-Spline Simplification and Local Refinement
,”
ACM Trans. Graphics
,
23
(
3
), pp.
276
283
.10.1145/1015706.1015715
31.
Bazilevs
,
Y.
,
Calo
,
V. M.
,
Cottrell
,
J. A.
,
Evans
,
J. A.
,
Hughes
,
T. J. R.
,
Lipton
,
S.
,
Scott
,
M. A.
, and
Sederberg
,
T. W.
,
2010
, “
Isogeometric Analysis Using T-Splines
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
5–8
), pp.
229
263
.10.1016/j.cma.2009.02.036
32.
Bazilevs
,
Y.
,
Hsu
,
M.-C.
, and
Scott
,
M. A.
,
2012
, “
Isogeometric Fluid–Structure Interaction Analysis With Emphasis on Non-Matching Discretizations, and With Application to Wind Turbines
,”
Comput. Methods Appl. Mech. Eng.
,
249–252
, pp.
28
41
.10.1016/j.cma.2012.03.028
33.
Korobenko
,
A.
,
Hsu
,
M.-C.
,
Akkerman
,
I.
,
Tippmann
,
J.
, and
Bazilevs
,
Y.
,
2013
, “
Structural Mechanics Modeling and FSI Simulation of Wind Turbines
,”
Math. Models Methods Appl. Sci.
,
23
(
2
), pp.
249
272
.10.1142/S0218202513400034
34.
Reddy
,
J. N.
,
2004
,
Mechanics of Laminated Composite Plates and Shells: Theory and Analysis
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
35.
Chung
,
J.
, and
Hulbert
,
G. M.
,
1993
, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
,”
ASME J. Appl. Mech.
,
60
(
2
), pp.
371
375
.10.1115/1.2900803
36.
Daniel
, I
. M.
, and
Ishai
,
O.
,
2006
,
Engineering Mechanics of Composite Materials
,
Oxford University Press
,
New York
.
37.
Zayas
,
J.
, and
Johnson
,
W.
,
2008
, “
3X-100 Blade Field Test
,” Wind Energy Technology Department, Sandia National Laboratories, Albuquerque, NM, Report No. SAND2007-5138.
38.
Berry
,
D.
, and
Ashwill
,
T.
,
2007
, “
Design of 9-Meter Carbon-Fiberglass Prototype Blades: CX-100 and TX-100
,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND2007-0201.
39.
Tippmann
,
J.
,
Zhu
,
P.
, and
di Scalea
,
F. L.
,
2015
, “
Application of Damage Detection Methods Using Passive Reconstruction of Impulse Response Functions
,”
Philos. Trans. R. Soc.
, A,
373
(2035), p.
20140070
.10.1098/rsta.2014.0070
40.
Tippmann
,
J.
, and
di Scalea
,
F. L.
,
2015
, “
Passive-Only Damage Detection by Reciprocity of Green’s Functions Reconstructed From Diffuse Acoustic Fields With Application to Wind Turbine Blades
,”
J. Intell. Mater. Syst. Struct.
,
26
, pp.
1251
1258
.
41.
Tippmann
,
J.
, and
di Scalea
,
F. L.
,
2014
, “
Experiments on a Wind Turbine Blade Testing: An Indication for Damage Using the Causal and Anti-Causal Green’s Function Reconstructed From a Diffuse Field
,”
Proc. SPIE
,
9064
, p.
90641I
.10.1117/12.2046417
42.
Booker
,
A. J.
,
Dennis
,
J. E.
, Jr.
,
Frank
,
P. D.
,
Serafini
,
D. B.
,
Torczon
,
V.
, and
Trosset
,
M. W.
,
1999
, “
A Rigorous Framework for Optimization of Expensive Functions by Surrogates
,”
Struct. Optim.
,
17
(
1
), pp.
1
13
.10.1007/BF01197708
You do not currently have access to this content.