Carbon nanotube (CNT) reinforced composites have been drawing intense attentions of researchers due to their good mechanical and physical properties as well as potential applications. The diameter, as an important geometric parameter of CNTs, significantly affects the performance of CNTs in the reinforced composites, not only in a direct way but also in an indirect way by influencing the effective modulus and strength of reinforcing CNTs. This paper investigates the comprehensive effect of CNT diameter on the fracture toughness of CNT reinforced composites by accounting for both direct and indirect influences of CNT diameter based on the three-level failure analysis. The criteria for failure modes are established analytically, and the types of failure mode transition with the corresponding optimal CNT diameter are obtained. It is found that reducing CNT diameter can cause a sudden drop in fracture toughness of composites due to the transition of dominant failure mode. Therefore, the CNTs with smaller diameter do not definitely confer a better fracture toughness on their reinforced composites, and the optimal CNT diameter may exist in the transition between failure modes, especially from interfacial debonding to CNT break. In addition, according to the results, the failure mode of CNT break is suggested to be avoided in the composite design because of the low fracture toughness enhancement of CNTs in this mode. This study can provide guiding reference for CNT reinforced composite design.

References

References
1.
Behabtu
,
N.
,
Young
,
C. C.
,
Tsentalovich
,
D. E.
,
Kleinerman
,
O.
,
Wang
,
X.
,
Ma
,
A. W.
,
Bengio
,
E. A.
,
ter Waarbeek
,
R. F.
,
de Jong
,
J. J.
,
Hoogerwerf
,
R. E.
,
Fairchild
,
S. B.
,
Ferguson
,
J. B.
,
Maruyama
,
B.
,
Kono
,
J.
,
Talmon
,
Y.
,
Cohen
,
Y.
,
Otto
,
M. J.
, and
Pasquali
,
M.
,
2013
, “
Strong, Light, Multifunctional Fibers of Carbon Nanotubes With Ultrahigh Conductivity
,”
Science
,
339
(
6116
), pp.
182
187
.10.1126/science.1228061
2.
Boncel
,
S.
,
Sundaram
,
R. M.
,
Windle
,
A. H.
, and
Koziol
,
K. K. K.
,
2011
, “
Enhancement of the Mechanical Properties of Directly Spun CNT Fibers by Chemical Treatment
,”
ACS Nano
,
5
(
12
), pp.
9339
9344
.10.1021/nn202685x
3.
Liu
,
K.
,
Sun
,
Y. H.
,
Zhou
,
R. F.
,
Zhu
,
H. Y.
,
Wang
,
J. P.
,
Liu
,
L.
,
Fan
,
S. S.
, and
Jiang
,
K. L.
,
2010
, “
Carbon Nanotube Yarns With High Tensile Strength Made by a Twisting and Shrinking Method
,”
Nanotechnology
,
21
(
4
), pp.
19
63
.10.1088/0957-4484/21/4/045708
4.
Shin
,
M. K.
,
Oh
,
J.
,
Lima
,
M.
,
Kozlov
,
M. E.
,
Kim
,
S. J.
, and
Baughman
,
R. H.
,
2010
, “
Elastomeric Conductive Composites Based on Carbon Nanotube Forests
,”
Adv. Mater.
,
22
(
24
), pp.
2663
2667
.10.1002/adma.200904270
5.
Bokobza
,
L.
,
2009
, “
Mechanical, Electrical and Spectroscopic Investigations of Carbon Nanotube-Reinforced Elastomers
,”
Vib. Spectrosc.
,
51
(
1
), pp.
52
59
.10.1016/j.vibspec.2008.10.001
6.
Araby
,
S.
,
Meng
,
Q.
,
Zhang
,
L.
,
Zaman
,
I.
,
Majewski
,
P.
, and
Ma
,
J.
,
2015
, “
Elastomeric Composites Based on Nanomaterials
,”
Nanotechnology
,
26
(
11
), p.
112001
.10.1088/0957-4484/26/11/112001
7.
Byrne
,
M. T.
, and
Gun'ko
,
Y. K.
,
2010
, “
Recent Advances in Research on Carbon Nanotube–Polymer Composites
,”
Adv. Mater.
,
22
(
15
), pp.
1672
1688
.10.1002/adma.200901545
8.
Rakow
,
E. G.
,
2013
, “
Carbon Nanotubes in New Materials
,”
Russ. Chem. Rev.
,
82
(
1
), pp.
27
47
.10.1070/RC2013v082n01ABEH004227
9.
Chae
,
H. G.
,
Choi
,
Y. H.
,
Minus
,
M. L.
, and
Kumar
,
S.
,
2009
, “
Carbon Nanotube Reinforced Small Diameter Polyacrylonitrile Based Carbon Fiber
,”
Compos. Sci. Technol.
,
69
(
3
), pp.
406
413
.10.1016/j.compscitech.2008.11.008
10.
Chatterjee
,
S.
,
Nüesch
,
F. A.
, and
Chu
,
B. T. T.
,
2011
, “
Comparing Carbon Nanotubes and Graphene Nanoplatelets as Reinforcements in Polyamide 12 Composites
,”
Nanotechnology
,
22
(
27
), p.
275714
.10.1088/0957-4484/22/27/275714
11.
Sobolkina
,
A.
,
Mechtcherine
,
V.
,
Khavrus
,
V.
,
Maier
,
D.
,
Mende
,
M.
,
Ritschel
,
M.
, and
Leonhardt
,
A.
,
2012
, “
Dispersion of Carbon Nanotubes and Its Influence on the Mechanical Properties of the Cement Matrix
,”
Cem. Concr. Compos.
,
34
(
10
), pp.
1104
1113
.10.1016/j.cemconcomp.2012.07.008
12.
Das
,
D.
, and
Satapathy
,
B. K.
,
2014
, “
Designing Tough and Fracture Resistant Polypropylene/Multi Wall Carbon Nanotubes Nanocomposites by Controlling Stereo-Complexity and Dispersion Morphology
,”
Mater. Des.
,
54
(
2
), pp.
712
726
.10.1016/j.matdes.2013.08.067
13.
Li
,
Y.
,
Liu
,
Y. L.
,
Peng
,
X. H.
,
Yan
,
C.
,
Liu
,
S.
, and
Hu
,
N.
,
2011
, “
Pull-Out Simulations on Interfacial Properties of Carbon Nanotube-Reinforced Polymer Nanocomposites
,”
Comput. Mater. Sci.
,
50
(
6
), pp.
1854
1860
.10.1016/j.commatsci.2011.01.029
14.
Araush
,
B.
,
Wang
,
Q.
, and
Varadan
,
V. K.
,
2014
, “
Mechanical Properties of Carbon Nanotube/Polymer Composites
,”
Nat. Sci. Rep.
,
4
(
4
), pp.
6479
6487
.10.1038/srep06479
15.
Li
,
L.
,
Xia
,
Z. H.
,
Curtin
,
W. A.
, and
Yang
,
Y. Q.
,
2009
, “
Molecular Dynamics Simulations of Interfacial Sliding in Carbon-Nanotube/Diamond Nanocomposites
,”
J. Am. Ceram. Soc.
,
92
(
10
), pp.
2331
2336
.10.1111/j.1551-2916.2009.03214.x
16.
Pavia
,
F.
, and
Curtin
,
W. A.
,
2012
, “
Optimizing Strength and Toughness of Nanofiber-Reinforced CMCs
,”
J. Mech. Phys. Solids
,
60
(
9
), pp.
1688
1702
.10.1016/j.jmps.2012.04.005
17.
Pavia
,
F.
, and
Curtin
,
W. A.
,
2011
, “
Interfacial Sliding in Carbon Nanotube/Diamond Matrix Composites
,”
Acta Mater.
,
59
(
17
), pp.
6700
6709
.10.1016/j.actamat.2011.07.027
18.
Pavia
,
F.
, and
Curtin
,
W. A.
,
2013
, “
Molecular Modeling of Cracks at Interfaces in Nanoceramic Composites
,”
J. Mech. Phys. Solids
,
61
(
10
), pp.
1971
1982
.10.1016/j.jmps.2013.06.001
19.
Bradshaw
,
R. D.
,
Fisher
,
F. T.
, and
Brinson
,
L. C.
,
2003
, “
Fiber Waviness in Nanotube-Reinforced Polymer Composites—II: Modeling Via Numerical Approximation of the Dilute Strain Concentration Tensor
,”
Compos. Sci. Technol.
,
63
(
11
), pp.
1705
1722
.10.1016/S0266-3538(03)00070-8
20.
Eitan
,
A.
,
Fisher
,
F. T.
,
Andrews
,
R.
,
Brinson
,
L. C.
, and
Schadler
,
L. S.
,
2006
, “
Reinforcement Mechanisms in MWCNT-Filled Polycarbonate
,”
Compos. Sci. Technol.
,
66
(
9
), pp.
1162
1173
.10.1016/j.compscitech.2005.10.004
21.
Chen
,
Y. L.
,
Liu
,
B.
,
He
,
X. Q.
,
Huang
,
Y.
, and
Hwang
,
K. C.
,
2010
, “
Failure Analysis and the Optimal Toughness Design of Carbon Nanotube-Reinforced Composites
,”
Compos. Sci. Technol.
,
70
(
9
), pp.
1360
1367
.10.1016/j.compscitech.2010.04.015
22.
Chen
,
Y. L.
,
Liu
,
B.
,
Huang
,
Y.
, and
Hwang
,
K. C.
,
2011
, “
Fracture Toughness of Carbon Nanotube-Reinforced Metal- and Ceramic-Matrix Composites
,”
J. Nanomater.
,
2011
, p. 746029.10.1155/2011/746029
23.
Tang
,
L. C.
,
Zhang
,
H.
,
Han
,
J. H.
,
Wu
,
X. P.
, and
Zhang
,
Z.
,
2011
, “
Fracture Mechanisms of Epoxy Filled With Ozone Functionalized Multi-Wall Carbon Nanotubes
,”
Compos. Sci. Technol.
,
72
(
1
), pp.
7
13
.10.1016/j.compscitech.2011.07.016
24.
Tang
,
L. C.
,
Zhang
,
H.
,
Wu
,
X. P.
, and
Zhang
,
Z.
,
2011
, “
A Novel Failure Analysis of Multi-Walled Carbon Nanotubes in Epoxy Matrix
,”
Polymer
,
52
(
9
), pp.
2070
2074
.10.1016/j.polymer.2011.03.002
25.
Baji
,
A.
,
Mai
,
Y. W.
,
Wong
,
S. C.
,
Abtahi
,
M.
, and
Chen
,
P.
,
2010
, “
Electrospinning of Polymer Nanofibers: Effects on Oriented Morphology, Structures and Tensile Properties
,”
Compos. Sci. Technol.
,
70
(
5
), pp.
703
718
.10.1016/j.compscitech.2010.01.010
26.
Wong
,
S. C.
,
Baji
,
A.
, and
Leng
,
S.
,
2008
, “
Effect of Fiber Diameter on Tensile Properties of Electrospun Poly(ɛ-Caprolactone)
,”
Polymer
,
49
(
21
), pp.
4713
4722
.10.1016/j.polymer.2008.08.022
27.
Chew
,
S. Y.
,
Hufnagel
,
T. C.
,
Lim
,
C. T.
, and
Leong
,
K. W.
,
2006
, “
Mechanical Properties of Single Electrospun Drug-Encapsulated Nanofibres
,”
Nanotechnology
,
17
(
15
), pp.
3880
3891
.10.1088/0957-4484/17/15/045
28.
Chen
,
Y. L.
,
Wang
,
S. T.
,
Liu
,
B.
, and
Zhang
,
J. Y.
,
2015
, “
Effects of Geometrical and Mechanical Properties of Fiber and Matrix on Composite Fracture Toughness
,”
Compos. Struct.
,
122
, pp.
496
506
.10.1016/j.compstruct.2014.12.011
29.
Guo
,
X.
,
Wang
,
J. B.
, and
Zhang
,
H. W.
,
2006
, “
Mechanical Properties of Single-Walled Carbon Nanotubes Based on Higher Order Cauchy–Born Rule
,”
Int. J. Solids Struct.
,
43
(
5
), pp.
1276
1290
.10.1016/j.ijsolstr.2005.05.049
30.
Stuart
,
S. J.
,
Tutein
,
A. B.
, and
Harrison
,
J. A.
,
2000
, “
A Reactive Potential for Hydrocarbons With Intermolecular Interactions
,”
J. Chem. Phys.
,
112
(
14
), pp.
6472
6486
.10.1063/1.481208
31.
Belytschko
,
T.
,
Xiao
,
S. P.
,
Schatz
,
G. C.
, and
Ruoff
,
R. S.
,
2002
, “
Atomistic Simulations of Nanotube Fracture
,”
Phys. Rev. B
,
65
(
23
), p.
235430
.10.1103/PhysRevB.65.235430
32.
Huang
,
Y.
,
Wu
,
J.
, and
Hwang
,
K. C.
,
2006
, “
Thickness of Graphene and Single-Wall Carbon Nanotubes
,”
Phys. Rev. B
,
74
(
24
), pp.
4070
4079
.10.1103/PhysRevB.74.245413
33.
Lee
,
C.
,
Wei
,
X. D.
,
Kysar
,
J. W.
, and
Hone
,
J.
,
2008
, “
Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
,”
Nano Lett.
,
321
(
5887
), pp.
385
388
.10.1126/science.1157996
34.
Wang
,
C. G.
,
Lan
,
L.
,
Liu
,
Y. P.
, and
Tan
,
H. F.
,
2014
, “
Multiple Component Correlation Model for Elastic Modulus of Single Layer Graphene Sheets
,”
Phys. E
,
56
, pp.
372
376
.10.1016/j.physe.2013.10.010
35.
Liu
,
F.
,
Ming
,
P.
, and
Li
,
J.
,
2007
, “
Ab Initio Calculation of Ideal Strength and Phonon Instability of Graphene Under Tension
,”
Phys. Rev. B
,
76
(
6
), p.
064120
.10.1103/PhysRevB.76.064120
36.
Chen
,
Y. L.
,
Liu
,
B.
,
Hwang
,
K. C.
, and
Huang
,
Y.
,
2011
, “
A Theoretical Evaluation of Load Transfer in Multi-Walled Carbon Nanotubes
,”
Carbon
,
49
(
1
), pp.
193
197
.10.1016/j.carbon.2010.09.003
37.
Yu
,
M. F.
,
Lourie
,
O.
,
Dyer
,
M. J.
,
Moloni
,
K.
,
Kelly
,
T. F.
, and
Ruoff
,
R. S.
,
2000
, “
Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load
,”
Science
,
287
(
5453
), pp.
637
640
.10.1126/science.287.5453.637
38.
Kis
,
A.
,
Jensen
,
K.
,
Aloni
,
S.
,
Mickelson
,
W.
, and
Zettl
,
A.
,
2006
, “
Interlayer Forces and Ultralow Sliding Friction in Multiwalled Carbon Nanotubes
,”
Phys. Rev. Lett.
,
97
(
2
), p.
025501
.10.1103/PhysRevLett.97.025501
39.
Lawrence
,
P.
,
1972
, “
Some Theoretical Considerations of Fibre Pull-Out From an Elastic Matrix
,”
J. Mater. Sci.
,
7
(
1
), pp.
1
6
.10.1007/BF00549541
40.
Anderson
,
T. L.
,
1995
,
Fracture Mechanics: Fundamentals and Applications
,
CRC Press
,
Boca Raton, FL
.
41.
Tada
,
H.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
,
2000
,
The Stress Analysis of Cracks Handbook
,
ASME Press
,
New York
.
42.
Volder
,
M. F. D.
,
Tawfick
,
S. H.
,
Baughman
,
R. H.
, and
Hart
,
A. J.
,
2013
, “
Carbon Nanotubes: Present and Future Commercial Applications
,”
Science
,
339
(
6119
), pp.
535
539
.10.1126/science.1222453
43.
Tsuda
,
T.
,
Ogasawara
,
T.
,
Deng
,
F.
, and
Takeda
,
N.
,
2011
, “
Direct Measurements of Interfacial Shear Strength of Multi-Walled Carbon Nanotube/PEEK Composite Using a Nano-Pullout Method
,”
Compos. Sci. Technol.
,
71
(
10
), pp.
1295
1300
.10.1016/j.compscitech.2011.04.014
44.
Liu
,
J. Q.
,
Xiao
,
T.
,
Liao
,
K.
, and
Wu
,
P.
,
2007
, “
Interfacial Design of Carbon Nanotube Polymer Composites: A Hybrid System of Noncovalent and Covalent Functionalizations
,”
Nanotechnology
,
18
(
16
), pp.
114
117
.10.1088/0957-4484/18/16/165701
45.
Zhang
,
Z. Q.
,
Liu
,
B.
,
Chen
,
Y. L.
,
Jiang
,
H.
,
Hwang
,
K. C.
, and
Huang
,
Y.
,
2008
, “
Mechanical Properties of Functionalized Carbon Nanotubes
,”
Nanotechnology
,
19
(
39
), p.
395702
.10.1088/0957-4484/19/39/395702
46.
Zhang
,
Z. Q.
,
Liu
,
B.
,
Zhang
,
Y. W.
,
Hwang
,
K. C.
, and
Gao
,
H. J.
,
2014
, “
Ultra-Strong Collagen-Mimic Carbon Nanotube Bundles
,”
Carbon
,
77
, pp.
1040
1053
.10.1016/j.carbon.2014.06.020
You do not currently have access to this content.