Analytical mechanics is used to derive original 3D equations of motion that represent impact at a point in a system of rigid bodies. For oblique impact between rough bodies in an eccentric (unbalanced) configuration, these equations are used to compare the calculations of energy dissipation obtained using either the kinematic, the kinetic, or the energetic coefficient of restitution (COR); $eN,eP$, or $e*$. Examples demonstrate that for equal energy dissipation by nonfrictional sources, either $eN≤e*≤eP$ or $eP≤e*≤eN$ depending on whether the unbalance of the impact configuration is positive or negative relative to the initial direction of slip. Consequently, when friction brings initial slip to rest during the contact period, calculations that show energy gains from impact can result from either the kinematic or the kinetic COR. On the other hand, the energetic COR always correctly accounts for energy dissipation due to both hysteresis of the normal contact force and friction, i.e., it is energetically consistent.

## References

1.
Keller
,
J. B.
,
1986
, “
Impact With Friction
,”
ASME J. Appl. Mech.
,
53
(
1
), pp.
1
4
.10.1115/1.3171712
2.
Routh
,
E. J.
,
1905
,
Dynamics of a System of Rigid Bodies
,
Dover Publications
,
New York
.
3.
Nordmark
,
A.
,
Dankowicz
,
H.
, and
Champneys
,
A.
,
2009
, “
Discontinuity-Induced Bifurcations in Systems With Impact and Friction: Discontinuities in the Impact Law
,”
Int. J. Nonlinear Mech.
,
44
(
10
), pp.
1022
1023
.10.1016/j.ijnonlinmec.2009.05.009
4.
Stronge
,
W. J.
,
1990
, “
Rigid-Body Collisions With Friction
,”
Proc. R. Soc. A
,
431
(
1881
), pp.
169
181
.10.1098/rspa.1990.0125
5.
Kane
,
T. R.
,
1984
, “
A Dynamics Puzzle
,”
, p. 6.
6.
Kane
,
T. R.
, and
Levinson
,
D. A.
,
1985
,
Dynamics: Theory and Applications
,
McGraw-Hill
,
New York
.
7.
Wang
,
Y.
, and
Mason
,
M. T.
,
1992
, “
Two Dimensional Rigid-Body Collisions With Friction
,”
ASME J. Appl. Mech.
,
59
(
3
), pp.
635
642
.10.1115/1.2893771
8.
Pereira
,
M. S.
, and
Nikravesh
,
P.
,
1996
, “
Impact Dynamics of Multibody Systems With Frictional Contact Using Joint Coordinates and Canonical Equations of Motion
,”
Nonlinear Dyn.
,
9
(
1–2
), pp.
53
71
.10.1007/BF01833293
9.
Shen
,
H.
, and
Townsend
,
M. A.
,
1998
, “
Collisions of Constrained Rigid Body Systems With Friction
,”
Shock Vib.
,
5
(
3
), pp.
141
151
.10.1155/1998/602768
10.
Ahmed
,
M. S.
,
Lankarani
,
H. M.
, and
Pereira
,
M. S.
,
1999
, “
Frictional Impact Analysis in Open-Loop Multi-Body Mechanical Systems
,”
ASME J. Mech. Des.
,
121
(
1
), pp.
119
127
.10.1115/1.2829412
11.
Djerassi
,
S.
,
2009
, “
Collision With Friction: Part A: Newton's Hypotheses
,”
Multibody Syst. Dyn.
,
21
(
1
), pp.
37
54
.10.1007/s11044-008-9126-2
12.
Glocker
,
Ch.
,
2014
, “
Energetic Consistency Conditions for Standard Impacts, Part II: Poisson-Type Inequality Impact Laws
,”
Multibody Syst. Dyn.
,
32
(
4
), pp.
445
509
.10.1007/s11044-013-9387-2
13.
Lankarani
,
H. M.
, and
Pereira
,
M. S.
,
2001
, “
Treatment of Impact With Friction in Planar Multibody Mechanical Systems
,”
Multibody Syst. Dyn.
,
6
(
3
), pp.
203
227
.10.1023/A:1012005130031
14.
Djerassi
,
S.
,
2009
, “
Collision With Friction: Part B: Poisson's and Stronge's Hypotheses
,”
Multibody Syst. Dyn.
,
21
(
1
), pp.
55
70
.10.1007/s11044-008-9127-1
15.
Stronge
,
W. J.
,
2000
,
Impact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
16.
Batlle
,
J. A.
,
1996
, “
The Sliding Velocity Flow of Rough Collisions in Multibody Systems
,”
ASME J. Appl. Mech.
,
63
(
3
), pp.
804
809
.10.1115/1.2823366
17.
Batlle
,
J. A.
,
1996
, “
Rough Balanced Collisions
,”
ASME J. Appl. Mech.
,
63
(
1
), pp.
168
172
.10.1115/1.2787194
18.
Batlle
,
J. A.
,
1993
, “
On Newton's and Poisson's Rules of Percussive Dynamics
,”
ASME J. Appl. Mech.
,
60
(
2
), pp.
376
381
.10.1115/1.2900804
19.
Shen
,
Y.
, and
Stronge
,
W. J.
,
2011
, “
Painlevé Paradox During Oblique Impact With Friction
,”
Eur. J. Mech. A/Solids
,
30
(
4
), pp.
457
467
.10.1016/j.euromechsol.2011.03.001
20.
Stronge
,
W. J.
,
2013
, “
Smooth Dynamics of Oblique Impact With Friction
,”
Int. J. Impact Eng.
,
51
, pp.
36
49
.10.1016/j.ijimpeng.2012.08.001
21.
Zhen
,
Z.
,
Liu
,
C.
, and
Chen
,
B.
,
2007
, “
The Painlevé Paradox Studied at a 3D Slender Rod
,”
Multibody Syst. Dyn.
,
19
(
4
), pp.
323
343
.10.1007/s11044-007-9098-7
22.
Han
,
I.
, and
Gilmore
,
B. J.
,
1993
, “
Multibody Impact Motion With Friction—Analysis, Simulation and Experimental Validation
,”
ASME J. Appl. Mech.
,
115
(
3
), pp.
412
422
.10.1115/1.2919206
23.
Souchet
,
R.
,
1994
, “
Restitution and Friction Laws in Rigid Body Collisions
,”
Int. J. Eng. Sci.
,
32
(
5
), pp.
863
876
.10.1016/0020-7225(94)90066-3
24.
Hurmuzlu
,
Y.
,
1998
, “
An Energy Based Coefficient of Restitution for Planar Impacts of Slender Bar With Massive External Surfaces
,”
ASME J. Appl. Mech.
,
65
(
4
), pp.
952
962
.10.1115/1.2791939
25.
Paoli
,
L.
, and
Schatzman
,
M.
,
2007
, “
Numerical Simulation of the Dynamics of an Impacting Bar
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
29–30
), pp.
2839
2851
.10.1016/j.cma.2006.11.024
26.
Payr
,
M.
, and
Glocker
,
Ch.
,
2005
, “
Oblique Frictional Impact of a Bar: Analysis and Comparison of Different Impact Laws
,”
Nonlinear Dyn.
,
41
(
4
), pp.
361
383
.10.1007/s11071-005-8200-z
27.
Lubarda
,
V. A.
,
2010
, “
The Bounds on the Coefficients of Restitution for Frictional Impact of a Rigid Pendulum Against a Fixed Surface
,”
ASME J Appl. Mech.
,
77
(
1
), p.
011006
.10.1115/1.3172198