We investigate the properties of high-amplitude stress waves propagating through chains of elastic–plastic particles using experiments and simulations. We model the system after impact using discrete element method (DEM) with strain-rate dependent contact interactions. Experiments are performed on a Hopkinson bar coupled with a laser vibrometer. The bar excites chains of 50 identical particles and dimer chains of two alternating materials. After investigating how the speed of the initial stress wave varies with particle properties and loading amplitude, we provide an upper bound for the leading pulse velocity that can be used to design materials with tailored wave propagation.

References

References
1.
Nesterenko
,
V.
,
2001
,
Dynamics of Heterogeneous Materials
,
Springer
,
New York
.
2.
Job
,
S.
,
Melo
,
F.
,
Sokolow
,
A.
, and
Sen
,
S.
,
2007
, “
Solitary Wave Trains in Granular Chains: Experiments, Theory, and Simulations
,”
Granular Matter
,
10
(1), pp.
13
20
.10.1007/s10035-007-0054-2
3.
Daraio
,
C.
,
Nesterenko
,
V. F.
,
Herbold
,
E. B.
, and
Jin
,
S.
,
2006
, “
Tunability of Solitary Wave Properties in One-Dimensional Strongly Nonlinear Phononic Crystals
,”
Phys. Rev. E
,
73
(
2
), p.
026610
.10.1103/PhysRevE.73.026610
4.
Doney
,
R. L.
,
Agui
,
J. H.
, and
Sen
,
S.
,
2009
, “
Energy Partitioning and Impulse Dispersion in the Decorated, Tapered, Strongly Nonlinear Granular Alignment: A System With Many Potential Applications
,”
J. Appl. Phys.
,
106
(6), p.
064905
.10.1063/1.3190485
5.
Nesterenko
,
V. F.
,
Daraio
,
C.
,
Herbold
,
E. B.
, and
Jin
,
S.
,
2005
, “
Anomalous Wave Reflection at the Interface of Two Strongly Nonlinear Granular Media
,”
Phys. Rev. Lett.
,
95
(
15
), p.
158702
.10.1103/PhysRevLett.95.158702
6.
Daraio
,
C.
,
Nesterenko
,
V. F.
,
Herbold
,
E. B.
, and
Jin
,
S.
,
2006
, “
Energy Trapping and Shock Disintegration in a Composite Granular Medium
,”
Phys. Rev. Lett.
,
96
(
5
), p.
058002
.10.1103/PhysRevLett.96.058002
7.
Fraternali
,
F.
,
Porter
,
M. A.
, and
Daraio
,
C.
,
2008
, “
Optimal Design of Composite Granular Protectors
,”
Mech. Adv. Mater. Struct.
,
17
(
1
), pp.
1
19
.10.1080/15376490802710779
8.
Hong
,
J.
,
2005
, “
Universal Power-Law Decay of Impulse Energy Granular Protectors
,”
Phys. Rev. Lett.
,
94
(
10
), p.
108001
.10.1103/PhysRevLett.94.108001
9.
Ngo
,
D.
,
Fraternali
,
F.
, and
Daraio
,
C.
,
2012
, “
Highly Nonlinear Solitary Wave Propagation in Y-Shaped Granular Crystals With Variable Branch Angles
,”
Phys. Rev. E
,
85
(
3
), p.
036602
.10.1103/PhysRevE.85.036602
10.
Leonard
,
A.
,
Ponson
,
L.
, and
Daraio
,
C.
,
2014
, “
Wave Mitigation in Ordered Networks of Granular Chains
,”
J. Mech. Phys. Solids
,
73
, pp.
103
117
.10.1016/j.jmps.2014.08.004
11.
Jayaprakash
,
K. R.
,
Starosvetsky
,
Y.
, and
Vakakis
,
A. F.
,
2011
, “
New Family of Solitary Waves in Granular Dimer Chains With No Precompression
,”
Phys. Rev. E
,
83
(
3
), p.
036606
.10.1103/PhysRevE.83.036606
12.
Molinari
,
A.
, and
Daraio
,
C.
,
2009
, “
Stationary Shocks in Periodic Highly Nonlinear Granular Chains
,”
Phys. Rev. E
,
80
(
5
), p.
056602
.10.1103/PhysRevE.80.056602
13.
Porter
,
M. A.
,
Daraio
,
C.
,
Herbold
,
E. B.
,
Szelengowicz
,
I.
, and
Kevrekidis
,
P. G.
,
2008
, “
Highly Nonlinear Solitary Waves in Periodic Dimer Granular Chains
,”
Phys. Rev. E
,
77
(
1
), p.
015601
.10.1103/PhysRevE.77.015601
14.
Bragança
,
E. A.
,
Rosas
,
A.
, and
Lindenberg
,
K.
,
2013
, “
Binary Collision Approximation for Multi-Decorated Granular Chains
,”
Physica A
,
392
(
24
), pp.
6198
6205
.10.1016/j.physa.2013.07.076
15.
Sen
,
S.
,
Hong
,
J.
,
Bang
,
J.
,
Avalos
,
E.
, and
Doney
,
R.
,
2008
, “
Solitary Waves in the Granular Chain
,”
Phys. Reports
,
462
(
2
), pp.
21
66
.10.1016/j.physrep.2007.10.007
16.
Boechler
,
N.
,
Yang
,
J.
,
Theocharis
,
G.
,
Kevrekidis
,
P. G.
, and
Daraio
,
C.
,
2011
, “
Tunable Vibrational Band Gaps in One-Dimensional Diatomic Granular Crystals With Three-Particle Unit Cells
,”
J. App. Phys.
,
109
(7), p.
074906
.10.1063/1.3556455
17.
Hoogeboom
,
C.
,
Man
,
Y.
,
Boechler
,
N.
,
Theocharis
,
G.
,
Kevrekidis
,
P. G.
,
Kevrekidis
,
I. G.
, and
Daraio
,
C.
,
2013
, “
Hysteresis Loops and Multi-Stability: From Periodic Orbits to Chaotic Dynamics (and Back) in Diatomic Granular Crystals
,”
Europhys. Lett.
,
101
(
4
), p.
44003
.10.1209/0295-5075/101/44003
18.
Herbold
,
E. B.
,
Kim
,
J.
,
Nesterenko
,
V. F.
,
Wang
,
S.
, and
Daraio
,
C.
,
2009
, “
Pulse Propagation in a Linear and Nonlinear Diatomic Periodic Chain: Effects of Acoustic Frequency Band-Gap
,”
Acta Mech.
,
205
(
1–4
), pp.
85
103
.10.1007/s00707-009-0163-6
19.
Breindel
,
A.
,
Sun
,
D.
, and
Sen
,
S.
,
2011
, “
Impulse Absorption Using Small, Hard Panels of Embedded Cylinders With Granular Alignments
,”
App. Phys. Lett.
,
99
(
6
), p.
063510
.10.1063/1.3624466
20.
Tournat
,
V.
,
Gusev
,
V. E.
, and
Castagnede
,
B.
,
2004
, “
Self-Demodulation of Elastic Waves in a One-Dimensional Granular Chain
,”
Phys. Rev. E
,
70
(
5
), p.
056603
.10.1103/PhysRevE.70.056603
21.
Ganesh
,
R.
, and
Gonella
,
S.
,
2014
, “
Invariants of Nonlinearity in the Phononic Characteristics of Granular Chains
,”
Phys. Rev. E
,
90
(
2
), p.
023205
.10.1103/PhysRevE.90.023205
22.
Cabaret
,
J.
,
Tournat
,
V.
, and
Bequin
,
P.
,
2012
, “
Amplitude-Dependent Phononic Processes in a Diatomic Granular Chain in the Weakly Nonlinear Regime
,”
Phys. Rev. E
,
86
(
4
), p.
041305
.10.1103/PhysRevE.86.041305
23.
Coste
,
C.
, and
Gilles
,
B.
,
1998
, “
On the Validity of Hertz Contact Law for Granular Material Acoustics
,”
Eur. Phys. J. B
,
7
(
1
), pp.
155
168
.10.1007/s100510050598
24.
Pal
,
R. K.
,
Awasthi
,
A. P.
, and
Geubelle
,
P. H.
,
2013
, “
Wave Propagation in Elasto-Plastic Granular Systems
,”
Granular Matter
,
15
(
6
), pp.
747
758
.10.1007/s10035-013-0449-1
25.
Pal
,
R. K.
,
Awasthi
,
A. P.
, and
Geubelle
,
P. H.
,
2014
, “
Characterization of Wave Propagation in Elastic and Elastoplastic Granular Chains
,”
Phys. Rev. E
,
89
(
1
), p.
012204
.10.1103/PhysRevE.89.012204
26.
Wang
,
E.
,
Manjunath
,
M.
,
Awasthi
,
A. P.
,
Pal
,
R. K.
,
Geubelle
,
P. H.
, and
Lambros
,
J.
,
2014
, “
High-Amplitude Elastic Solitary Wave Propagation in 1-D Granular Chains With Preconditioned Beads: Experiments and Theoretical Analysis
,”
J. Mech. Phys. Solids
,
72
, pp.
161
173
.10.1016/j.jmps.2014.08.002
27.
Shoaib
,
M.
, and
Kari
,
L.
,
2011
, “
Discrete Element Simulations of Elastoplastic Shock Wave Propagation in Spherical Particles
,”
Adv. Acoust. Vib.
,
2011
, pp.
1
9
.10.1155/2011/123695
28.
Thornton
,
C
.,
1995
, “
Coefficient of Restitution for Collinear Collisions of Elastic-Perfectly Plastic Spheres
,”
ASME J. Appl. Mech.
,
62
(
2
), pp.
383
386
.10.1115/1.2787319
29.
Vu-Quoc
,
L.
,
Zhang
,
X.
, and
Lesburg
,
L.
,
1999
, “
A Normal Force–Displacement Model for Contacting Spheres Accounting for Plastic Deformation: Force-Driven Formulation
,”
ASME J. Appl. Mech.
,
67
(
2
), pp.
363
371
.10.1115/1.1305334
30.
Wang
,
E.
,
On
,
T.
, and
Lambros
,
J.
,
2013
, “
An Experimental Study of the Dynamic Elasto-Plastic Contact Behavior of Dimer Metallic Granules
,”
Exp. Mech.
,
53
(
5
), pp.
883
892
.10.1007/s11340-012-9696-z
31.
Burgoyne
,
H. A.
, and
Daraio
,
C.
,
2014
, “
Strain-Rate-Dependent Model for the Dynamic Compression of Elastoplastic Spheres
,”
Phys. Rev. E
,
89
(
3
), p.
032203
.10.1103/PhysRevE.89.032203
32.
On
,
T.
,
LaVigne
,
P. A.
, and
Lambros
,
J.
,
2014
, “
Development of Plastic Nonlinear Waves in One-Dimensional Ductile Granular Chains Under Impact Loading
,”
Mech. Mater.
,
68
, pp.
29
37
.10.1016/j.mechmat.2013.06.013
33.
Pal
,
R. K.
,
Morton
,
J.
,
Wang
,
E.
,
Lambros
,
J.
, and
Geubelle
,
P. H.
,
2015
, “
Impact Response of Elasto-Plastic Granular Chains Containing an Intruder Particle
,”
ASME J. Appl. Mech.
,
82
(
1
), p.
011002
.10.1115/1.4028959
34.
On
,
T.
,
Wang
,
E.
, and
Lambros
,
J.
, “
Plastic Waves in One-Dimensional Heterogeneous Granular Chains Under Impact Loading: Single Intruders and Dimer Chains
,”
Int. J. Solids Struct.,
61
, pp.
81
90
.10.1016/j.ijsolstr.2015.02.006
35.
Wang
,
E.
,
Geubelle
,
P.
, and
Lambros
,
J.
,
2013
, “
An Experimental Study of the Dynamic Elasto-Plastic Contact Behavior of Metallic Granules
,”
ASME J. Appl. Mech.
,
80
(
2
), p.
021009
.10.1115/1.4007254
36.
Gray
,
G. T.
,
2000
, “
Classic Split-Hopkinson Pressure Bar Testing
,”
ASM Handbook: Mechanical Testing and Evaluation
, Vol.
8
,
ASM International
,
Novelty, OH
.
37.
38.
Daraio
,
C.
,
Nesterenko
,
V. F.
,
Herbold
,
E. B.
, and
Jin
,
S.
,
2005
, “
Strongly Nonlinear Waves in a Chain of Teflon Beads
,”
Phys. Rev. E
,
72
(
1
), p.
016603
.10.1103/PhysRevE.72.016603
39.
Ashcroft
,
N. W.
, and
Mermin
,
N. D.
,
1976
,
Solid State Physics
,
Saunders College Publishing
,
Orlando, FL
.
40.
Hascoet
,
E.
,
Herrmann
,
H. J.
, and
Loreto
,
V.
,
1999
, “
Shock Propagation in a Granular Chain
,”
Phys. Rev. E
,
59
(
3
), pp.
3202
3206
.10.1103/PhysRevE.59.3202
41.
Tasi
,
J.
,
1980
, “
Evolution of Shocks in a One Dimensional Lattice
,”
J. Appl. Phys.
,
51
(
11
), pp.
5804
5815
.10.1063/1.327538
42.
Zhuang
,
S.
,
Ravichandran
,
G.
, and
Grady
,
D. E.
,
2003
, “
An Experimental Investigation of Shock Wave Propagation in Periodically Layered Composites
,”
J. Mech. Phys. Solids
,
52
(
2
), pp.
245
265
.10.1016/S0022-5096(02)00100-X
You do not currently have access to this content.