The origami waterbomb base (WB) is a single-vertex bistable mechanism that can be generalized to accommodate various geometric, kinematic, and kinetic needs. The traditional WB consists of a square sheet that has four mountain folds alternating with five valley folds (eight folds total) around the vertex in the center of the sheet. This special case mechanism can be generalized to create two classes of waterbomb-base-type mechanisms that allow greater flexibility for potential application. The generalized WB maintains the pattern of alternating mountain and valley folds around a central vertex but it is not restricted to eight total folds. The split-fold waterbomb base (SFWB) is made by splitting each fold of a general WB into two “half folds” of the same variety as the parent fold. This study develops kinematic, potential energy, and force–deflection models for the rigid-foldable, developable, symmetric cases of the generalized WB and the SFWB, and investigates the relative effects of numbers of folds and split-fold panel size, on device behavior. The effect of selected key parameters is evaluated, and equations are provided to enable the exploration of other important parameters that may be of interest in the design and analysis of specific mechanisms. The similarities and differences between the two general forms are discussed, including tunability of the bistable and force–deflection behavior of each.

References

References
1.
Hanna
,
B. H.
,
Lund
,
J. M.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
Waterbomb Base: A Symmetric Single-Vertex Bistable Origami Mechanism
,”
Smart Mater. Struct.
,
23
(
9
), p.
094009
.10.1088/0964-1726/23/9/094009
2.
Lang
,
R. J.
,
2011
,
Origami Design Secrets: Mathematical Methods for an Ancient Art
,
A K Peters/CRC Press
,
Boca Raton, FL
.
3.
Giegher
,
M.
,
1639
,
Le Trie Trattati
,
Paolo Frambotto
,
Verona, Italy
.
4.
Randlett
,
S.
,
1963
,
The Art of Origami
,
Faber and Faber
,
London
.
5.
Tachi
,
T.
,
2013
, “
Designing Freeform Origami Tessellations by Generalizing Resch's Patterns
,”
ASME J. Mech. Des.
,
135
(11), p.
111006
.10.1115/1.4025389
6.
Miura
,
K.
,
1985
, “
Method of Packaging and Deployment of Large Membranes in Space
,”
Inst. Space Astronaut. Sci.
,
618
, pp.
1
9
.
7.
Silverberg
,
J. L.
,
Evans
,
A. A.
,
McLeod
,
L.
,
Hayward
,
R. C.
,
Hull
,
T.
,
Santangelo
,
C. D.
, and
Cohen
,
I.
,
2014
, “
Using Origami Design Principles to Fold Reprogrammable Mechanical Metamaterials
,”
Science
,
345
(
6197
), pp.
647
650
.10.1126/science.1252876
8.
Schenk
,
M.
, and
Guest
,
S. D.
,
2012
, “
Geometry of Miura-Folded Metamaterials
,”
Proc. Natl. Acad. Sci. U. S. A.
,
110
(
9
), pp.
3276
3281
.10.1073/pnas.1217998110
9.
Mahadevan
,
L.
, and
Rica
,
S.
,
2005
, “
Self-Organized Origami
,”
Science
,
307
(
5716
), pp.
1740
.10.1126/science.1105169
10.
Zirbel
,
S. A.
,
Lang
,
R. J.
,
Magleby
,
S. P.
,
Thomson
,
M. W.
,
Sigel
,
D. A.
,
Walkemeyer
,
P. E.
,
Trease
,
B. P.
, and
Howell
,
L. L.
,
2013
, “
Accommodating Thickness in Origami-Based Deployable Arrays
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111005
.10.1115/1.4025372
11.
Ma
,
J.
, and
You
,
Z.
,
2013
, “
Energy Absorption of Thin-Walled Square Tubes With a Prefolded Origami Pattern—Part I: Geometry and Numerical Simulation
,”
ASME J. Appl. Mech.
,
81
(
1
), p.
011003
.10.1115/1.4024405
12.
Edmondson
,
B.
,
Bowen
,
L.
,
Grames
,
C.
,
Magleby
,
S.
,
Howell
,
L.
, and
Bateman
,
T.
,
2013
, “
Oriceps: Origami-Inspired Forceps
,”
ASME
Paper No. SMASIS2013-3299. 10.1115/SMASIS2013-3299
13.
Martinez
,
R. V.
,
Fish
,
C. R.
,
Chen
,
X.
, and
Whitesides
,
G. M.
,
2012
, “
Elastomeric Origami: Programmable Paper-Elastomer Composites as Pneumatic Actuators
,”
Adv. Funct. Mater.
,
22
(7), pp.
1376
1384
.10.1002/adfm.201102978
14.
Francis
,
K.
,
Rupert
,
L.
,
Lang
,
R.
,
Morgan
,
D.
,
Magleby
,
S.
, and
Howell
,
L.
,
2014
, “
From Crease Pattern to Product: Considerations to Engineering Origami-Adapted Designs
,”
ASME
Paper No. DETC2014-34031. 10.1115/DETC2014-34031
15.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1994
, “
The Folding of Triangulated Cylinders, Part I: Geometric Considerations
,”
ASME J. Appl. Mech.
,
61
(
4
), pp.
773
777
.10.1115/1.2901553
16.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1994
, “
The Folding of Triangulated Cylinders, Part II: The Folding Process
,”
ASME J. Appl. Mech.
,
61
(
4
), pp.
778
783
.10.1115/1.2901554
17.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1996
, “
The Folding of Triangulated Cylinders, Part III: Experiments
,”
ASME J. Appl. Mech.
,
63
(
1
), pp.
77
83
.10.1115/1.2787212
18.
Hawkes
,
E.
,
An
,
B.
,
Benbernou
,
N. M.
,
Tanaka
,
H.
,
Kim
,
S.
,
Demaine
,
E. D.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2010
, “
Programmable Matter by Folding
,”
Proc. Natl. Acad. Sci. U.S.A.
,
107
(28), pp.
12441
12445
.10.1073/pnas.0914069107
19.
Felton
,
S.
,
Tolley
,
M.
,
Demaine
,
E.
,
Rus
,
D.
, and
Wood
,
R.
,
2014
, “
A Method for Self-Folding Machines
,”
Science
,
345
(
6197
), pp.
644
646
.10.1126/science.1252610
20.
Tachi
,
T.
,
2010
, “
Geometric Considerations for the Design of Rigid Origami Structures
,”
International Association for Shell and Spatial Structures
(
IASS
) Symposium, Shanghai, Nov. 8–10.http://www.tsg.ne.jp/TT/cg/DesignOfRigidOrigamiStructures_tachi_IASS2010.pdf
21.
Winder
,
B.
,
Magleby
,
S.
, and
Howell
,
L.
,
2009
, “
Kinematic Representations of Pop-Up Paper Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021009
.10.1115/1.3046128
22.
Tachi
,
T.
,
2006
, “
Simulation of Rigid Origami
,”
Origami 4: Fourth International Meeting of Origami Science, Mathematics, and Education
, Pasadena, CA, Sept. 8–10.
23.
Dai
,
J. S.
, and
Jones
,
J. R.
,
2002
, “
Kinematics and Mobility Analysis of Carton Folds in Packing Manipulation Based on the Mechanism Equivalent
,”
Proc. Inst. Mech. Eng., Part C
,
216
(10), pp.
959
970
.10.1243/095440602760400931
24.
Belcastro
,
S.-M.
, and
Hull
,
T. C.
,
2002
, “
Modelling the Folding of Paper Into Three Dimensions Using Affine Transformations
,”
Linear Algebra Appl.
,
348
(
1–3
), pp.
273
282
.10.1016/S0024-3795(01)00608-5
25.
Bowen
,
L. A.
,
Grames
,
C. L.
,
Magleby
,
S. P.
,
Howell
,
L. L.
, and
Lang
,
R. J.
,
2013
, “
A Classification of Action Origami as Systems of Spherical Mechanisms
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111008
.10.1115/1.4025379
26.
Chiang
,
C. H.
,
2009
,
Kinematics of Spherical Mechanisms
,
Krieger Publishing
,
Malabar, FL
.
27.
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2004
, “
Bistable Configurations of Compliant Mechanisms Modeled Using Four Links and Translational Joints
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
657
666
.10.1115/1.1760776
28.
Ishii
,
H.
, and
Ting
,
K.-L.
,
2004
, “
SMA Actuated Compliant Bistable Mechanisms
,”
Mechatronics
,
14
(4), pp.
421
437
.10.1016/S0957-4158(03)00068-0
29.
Wilcox
,
D. L.
, and
Howell
,
L. L.
,
2005
, “
Fully Compliant Tensural Bistable Micro-Mechanisms (FTBM)
,”
J. Microelectromech. Syst.
,
14
(6), pp.
1223
1235
.10.1109/JMEMS.2005.859089
30.
Beharic
,
J.
,
Lucas
,
T. M.
, and
Harnett
,
C. K.
,
2014
, “
Analysis of a Compressed Bistable Buckled Beam on a Flexible Support
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081001
.10.1115/1.4027463
31.
Greenberg
,
H. C.
,
Gong
,
M. L.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2011
, “
Identifying Links Between Origami and Compliant Mechanisms
,”
Mech. Sci.
,
2
(
2
), pp.
217
225
.10.5194/ms-2-217-2011
32.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
33.
Mentrasti
,
L.
,
Cannella
,
F.
,
Pupilli
,
M.
, and
Dai
,
J. S.
,
2013
, “
Large Bending Behavior of Creased Paperboard. I. Experimental Investigations
,”
Int. J. Solids Struct.
,
50
(20–21), pp.
3089
3096
.10.1016/j.ijsolstr.2013.05.018
34.
Nagasawa
,
S.
,
Nasruddin Bin
,
M.
, and
Shiga
,
Y.
,
2011
, “
Bending Moment Characteristics on Repeated Folding Motion of Coated Paperboard Scored By Round-Edge Knife
,”
J. Adv. Mech. Des., Syst., Manuf.
,
5
(2), pp.
385
394
.10.1299/jamdsm.5.385
35.
Dai
,
J. S.
, and
Cannella
,
F.
,
2008
, “
Stiffness Characteristics of Carton Folds for Packaging
,”
ASME J. Mech. Des.
,
130
(2), p.
022305
.10.1115/1.2813785
36.
Nagasawa
,
S.
,
Fukuzawa
,
Y.
,
Yamaguchi
,
T.
,
Tsukatani
,
S.
, and
Katayama
,
I.
,
2003
, “
Effect of Crease Depth and Crease Deviation on Folding Deformation Characteristics of Coated Paperboard
,”
J. Mater. Process. Technol.
,
140
(1–3), pp.
157
162
.10.1016/S0924-0136(03)00825-2
37.
Francis
,
K. C.
,
Blanch
,
J. E.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
Origami-Like Creases in Sheet Materials for Compliant Mechanism Design
,”
Mech. Sci.
,
4
(2), pp.
371
380
.10.5194/ms-4-371-2013
38.
Pucheta
,
M. A.
, and
Cardona
,
A.
,
2010
, “
Design of Bistable Compliant Mechanisms Using Precision-Position and Rigid-Body Replacement Methods
,”
Mech. Mach. Theory
,
45
(2), pp.
304
326
.10.1016/j.mechmachtheory.2009.09.009
39.
Tanner
,
J. D.
, and
Jensen
,
B. D.
,
2013
, “
Power-Free Bistable Threshold Accelerometer Made From a Carbon Nanotube Framework
,”
J. Mech. Sci.
,
4
(
2
), pp.
397
405
.10.5194/ms-4-397-2013
40.
Silverberg
,
J.
,
Na
,
J.
,
Evans
,
A.
,
B.
,
L.
,
Hull
,
T.
,
Santangelo
,
C.
,
Lang
,
R.
,
Hayward
,
R.
, and
Cohen
,
I.
,
2015
, “
Origami Structures With a Critical Transition to Bistability Arising From Hidden Degrees of Freedom
,”
Nat. Mater.
,
14
(
4
), pp.
389
393
.10.1038/nmat4232
41.
Delimont
,
I. L.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2015
, “
Evaluating Compliant Hinge Geometries for Origami-Inspired Mechanisms
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011009
.10.1115/1.4029325
42.
Guo
,
W.
,
Li
,
M.
, and
Zhou
,
J.
,
2013
, “
Modeling Programmable Deformation of Self-Folding All-Polymer Structures With Temperature-Sensitive Hydrogels
,”
Smart Mater. Struct.
,
22
(
11
), p.
115028
.10.1088/0964-1726/22/11/115028
43.
Liu
,
Y.
,
Boyles
,
J. K.
,
Genzer
,
J.
, and
Dickey
,
M. D.
,
2012
, “
Self-Folding of Polymer Sheets Using Local Light Absorption
,”
R. Soc. Chem.
, Soft Matter,
8
(
6
), pp.
1764
1769
.10.1039/C1SM06564E
44.
Ahmed
,
S.
,
Lauff
,
C.
,
Crivaro
,
A.
,
McGough
,
K.
,
Sheridan
,
R.
,
Frecker
,
M.
,
von Lockette
,
P.
,
Ounaies
,
Z.
,
Simpson
,
T.
,
Lien
,
J.-M.
, and
Strzelec
,
R.
,
2013
, “
Multi-Field Responsive Origami Structures: Preliminary Modeling and Experiments
,”
ASME
Paper No. DETC2013–12405. 10.1115/DETC2013-12405
45.
Sterman
,
Y.
,
Demaine
,
E. D.
, and
Oxman
,
N.
,
2013
, “
PCB Origami: A Material-Based Design Approach to Computer-Aided Foldable Electronic Devices
,”
ASME J. Mech. Des.
,
135
(
11
), p.
114502
.10.1115/1.4025370
46.
Homer
,
E. R.
,
Harris
,
M. B.
,
Zirbel
,
S. A.
,
Kolodziejska
,
J. A.
,
Kozachkov
,
H.
,
Trease
,
B. P.
,
Borgonia
,
J.-P. C.
,
Agnes
,
G. S.
,
Howell
,
L. L.
, and
Hofmann
,
D. C.
,
2014
, “
New Methods for Developing and Manufacturing Compliant Mechanisms Utilizing Bulk Metallic Glass
,”
Adv. Eng. Mater.
,
16
(
7
), pp.
850
856
.10.1002/adem.201300566
You do not currently have access to this content.