Ordered cellular solids have higher compressive yield strength and stiffness compared to stochastic foams. The mechanical properties of cellular solids depend on their relative density and follow structural scaling laws. These scaling laws assume the mechanical properties of the constituent materials, like modulus and yield strength, to be constant and dictate that equivalent-density cellular solids made from the same material should have identical mechanical properties. We present the fabrication and mechanical properties of three-dimensional hollow gold nanolattices whose compressive responses demonstrate that strength and stiffness vary as a function of geometry and tube wall thickness. All nanolattices had octahedron geometry, a constant relative density, ρ ∼ 5%, a unit cell size of 5–20 μm, and a constant grain size in the Au film of 25–50 nm. Structural effects were explored by increasing the unit cell angle from 30 deg to 60 deg while keeping all other parameters constant; material size effects were probed by varying the tube wall thickness, t, from 200 nm to 635 nm, at a constant relative density and grain size. In situ uniaxial compression experiments revealed an order of magnitude increase in yield stress and modulus in nanolattices with greater lattice angles, and a 150% increase in the yield strength without a concomitant change in modulus in thicker-walled nanolattices for fixed lattice angles. These results imply that independent control of structural and material size effects enables tunability of mechanical properties of three-dimensional architected metamaterials and highlight the importance of material, geometric, and microstructural effects in small-scale mechanics.

References

1.
Fleck
,
N. A.
,
Deshpande
,
V. S.
, and
Ashby
,
M. F.
,
2010
, “
Micro-Architectured Materials: Past, Present and Future
,”
Proc. R. Soc. A
,
466
(
2121
), pp.
2495
2516
.10.1098/rspa.2010.0215
2.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1999
,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
Cambridge, UK
.
3.
Wallach
,
J. C.
, and
Gibson
,
L. J.
,
2001
, “
Mechanical Behavior of a Three-Dimensional Truss Material
,”
Int. J. Solids Struct.
,
38
(
40–41
), pp.
7181
7196
.10.1016/S0020-7683(00)00400-5
4.
Deshpande
,
V.
, and
Fleck
,
N.
,
2001
, “
Collapse of Truss Core Sandwich Beams in 3-Point Bending
,”
Int. J. Solids Struct.
,
38
(
36–37
), pp.
6275
6305
.10.1016/S0020-7683(01)00103-2
5.
Deshpande
,
V. S.
,
Fleck
,
N. A.
, and
Ashby
,
M. F.
,
2001
, “
Effective Properties of the Octet-Truss Lattice Material
,”
J. Mech. Phys. Solids
,
49
(
8
), pp.
1747
1769
.10.1016/S0022-5096(01)00010-2
6.
Zheng
,
X.
,
Lee
,
H.
,
Weisgraber
,
T. H.
,
Shusteff
,
M.
,
DeOtte
,
J.
,
Duoss
,
E. B.
,
Kuntz
,
J. D.
,
Biener
,
M. M.
,
Ge
,
Q.
,
Jackson
,
J. A.
,
Kucheyev
,
S. O.
,
Fang
,
N. X.
, and
Spadaccini
,
C. M.
,
2014
, “
Ultralight, Ultrastiff Mechanical Metamaterials
,”
Science
,
344
(
6190
), pp.
1373
1377
.10.1126/science.1252291
7.
Meza
,
L. R.
,
Das
,
S.
, and
Greer
,
J. R.
,
2014
, “
Strong, Lightweight, and Recoverable Three-Dimensional Ceramic Nanolattices
,”
Science
,
345
(
6202
), pp.
1322
1326
.10.1126/science.1255908
8.
Jang
,
D.
,
Meza
,
L.
,
Greer
,
F.
, and
Greer
,
J.
,
2013
, “
Fabrication and Deformation of Three-Dimensional Hollow Ceramic Nanostructures
,”
Nat. Mater.
,
12
, pp.
893
898
.10.1038/nmat3738
9.
Valdevit
,
L.
,
Godfrey
,
S. W.
,
Schaedler
,
T. A.
,
Jacobsen
,
A. J.
, and
Carter
,
W. B.
,
2013
, “
Compressive Strength of Hollow Microlattices: Experimental Characterization, Modeling, and Optimal Design
,”
J. Mater. Res.
,
28
(
17
), pp.
2461
2473
.10.1557/jmr.2013.160
10.
Torrents
,
A.
,
Schaedler
,
T. A.
,
Jacobsen
,
A. J.
,
Carter
,
W. B.
, and
Valdevit
,
L.
,
2012
, “
Characterization of Nickel-Based Microlattice Materials With Structural Hierarchy From the Nanometer to the Millimeter Scale
,”
Acta Mater.
,
60
(
8
), pp.
3511
3523
.10.1016/j.actamat.2012.03.007
11.
Schaedler
,
T. A.
,
Jacobsen
,
A. J.
,
Torrents
,
A.
,
Sorensen
,
A. E.
,
Lian
,
J.
,
Greer
,
J. R.
,
Valdevit
,
L.
, and
Carter
,
W. B.
,
2011
, “
Ultralight Metallic Microlattices
,”
Science
,
334
(
6058
), pp.
962
965
.10.1126/science.1211649
12.
Ng
,
K. Y.
,
Lin
,
Y.
, and
Ngan
,
A. H. W.
,
2009
, “
Deformation of Anodic Aluminum Oxide Nano-Honeycombs During Nanoindentation
,”
Acta Mater.
,
57
(
9
), pp.
2710
2720
.10.1016/j.actamat.2009.02.025
13.
Wang
,
J.
,
Evans
,
A. G.
,
Dharmasena
,
K.
, and
Wadley
,
H. N. G.
,
2003
, “
On the Performance of Truss Panels With Kagomé Cores
,”
Int. J. Solids Struct.
,
40
(
25
), pp.
6981
6988
.10.1016/S0020-7683(03)00349-4
14.
Wadley
,
H. N. G.
,
Fleck
,
N.
, and
Evans
,
A. G.
,
2003
, “
Fabrication and Structural Performance of Periodic Cellular Metal Sandwich Structures
,”
Compos. Sci. Technol.
,
63
(
16
), pp.
2331
2343
.10.1016/S0266-3538(03)00266-5
15.
Chiras
,
S.
,
Mumm
,
D. R.
,
Evans
,
A. G.
,
Wicks
,
N.
,
Hutchinson
,
J. W.
,
Dharmasena
,
K.
,
Wadley
,
H. N. G.
, and
Fichter
,
S.
,
2002
, “
The Structural Performance of Near-Optimized Truss Core Panels
,”
Int. J. Solids Struct.
,
39
(
15
), pp.
4093
4115
.10.1016/S0020-7683(02)00241-X
16.
Hodge
,
A. M.
,
Biener
,
J.
,
Hayes
,
J. R.
,
Bythrow
,
P. M.
,
Volkert
,
C. A.
, and
Hamza
,
A. V.
,
2007
, “
Scaling Equation for Yield Strength of Nanoporous Open-Cell Foams
,”
Acta Mater.
,
55
(
4
), pp.
1343
1349
.10.1016/j.actamat.2006.09.038
17.
Hutchinson
,
R. G.
, and
Fleck
,
N. A.
,
2006
, “
The Structural Performance of the Periodic Truss
,”
J. Mech. Phys. Solids
,
54
(
4
), pp.
756
782
.10.1016/j.jmps.2005.10.008
18.
Deshpande
,
V. S.
,
Ashby
,
M. F.
, and
Fleck
,
N. A.
,
2001
, “
Foam Topology: Bending Versus Stretching Dominated Architectures
,”
Acta Mater.
,
49
(
6
), pp.
1035
1040
.10.1016/S1359-6454(00)00379-7
19.
Jennings
,
A. T.
,
Burek
,
M. J.
, and
Greer
,
J. R.
,
2010
, “
Microstructure Versus Size: Mechanical Properties of Electroplated Single Crystalline Cu Nanopillars
,”
Phys. Rev. Lett.
,
104
(
13
), p.
135503
.10.1103/PhysRevLett.104.135503
20.
Greer
,
J. R.
, and
De Hosson
,
J. T. M.
,
2011
, “
Plasticity in Small-Sized Metallic Systems: Intrinsic Versus Extrinsic Size Effect
,”
Prog. Mater. Sci.
,
56
(
6
), pp.
654
724
.10.1016/j.pmatsci.2011.01.005
21.
Greer
,
J. R.
, and
Nix
,
W. D.
,
2005
, “
Size Dependence of Mechanical Properties of Gold at the Sub-Micron Scale
,”
Appl. Phys. A
,
80
(
8
), pp.
1625
1629
.10.1007/s00339-005-3204-6
22.
Greer
,
J. R.
,
Oliver
,
W. C.
, and
Nix
,
W. D.
,
2005
, “
Size Dependence of Mechanical Properties of Gold at the Micron Scale in the Absence of Strain Gradients
,”
Acta Mater.
,
53
(
6
), pp.
1821
1830
.10.1016/j.actamat.2004.12.031
23.
Dou
,
R.
, and
Derby
,
B.
,
2009
, “
A Universal Scaling Law for the Strength of Metal Micropillars and Nanowires
,”
Scr. Mater.
,
61
(
5
), pp.
524
527
.10.1016/j.scriptamat.2009.05.012
24.
Greer
,
J. R.
,
Jang
,
D.
, and
Gu
,
X. W.
,
2012
, “
Exploring Deformation Mechanisms in Nanostructured Materials
,”
JOM
,
64
(
10
), pp.
1241
1252
.10.1007/s11837-012-0438-6
25.
Jang
,
D.
, and
Greer
,
J. R.
,
2011
, “
Size-Induced Weakening and Grain Boundary-Assisted Deformation in 60 nm Grained Ni Nanopillars
,”
Scr. Mater.
,
64
(
1
), pp.
77
80
.10.1016/j.scriptamat.2010.09.010
26.
Gu
,
X. W.
,
Loynachan
,
C. N.
,
Wu
,
Z.
,
Zhang
,
Y.-W.
,
Srolovitz
,
D. J.
, and
Greer
,
J. R.
,
2012
, “
Size-Dependent Deformation of Nanocrystalline Pt Nanopillars
,”
Nano Lett.
,
12
(
12
), pp.
6385
6392
.10.1021/nl3036993
27.
Yang
,
B.
,
Motz
,
C.
,
Rester
,
M.
, and
Dehm
,
G.
,
2012
, “
Yield Stress Influenced by the Ratio of Wire Diameter to Grain Size—A Competition Between the Effects of Specimen Microstructure and Dimension in Micro-Sized Polycrystalline Copper Wires
,”
Philos. Mag.
,
92
(
25–27
), pp.
3243
3256
.10.1080/14786435.2012.693215
28.
Rys
,
J.
,
Valdevit
,
L.
,
Schaedler
,
T. A.
,
Jacobsen
,
A. J.
,
Carter
,
W. B.
, and
Greer
,
J. R.
,
2014
, “
Fabrication and Deformation of Metallic Glass Micro-Lattices
,”
Adv. Eng. Mater.
,
16
(
7
), pp.
889
896
.10.1002/adem.201300454
29.
Chen
,
D. Z.
,
Jang
,
D.
,
Guan
,
K. M.
,
An
,
Q.
,
Goddard
,
W. A.
, and
Greer
,
J. R.
,
2013
, “
Nanometallic Glasses: Size Reduction Brings Ductility, Surface State Drives Its Extent
,”
Nano Lett.
,
13
(
9
), pp.
4462
4468
.10.1021/nl402384r
30.
Chen
,
C. Q.
,
Pei
,
Y. T.
, and
De Hosson
,
J. T. M.
,
2010
, “
Effects of Size on the Mechanical Response of Metallic Glasses Investigated Through In Situ TEM Bending and Compression Experiments
,”
Acta Mater.
,
58
(
1
), pp.
189
200
.10.1016/j.actamat.2009.08.070
31.
Volkert
,
C. A.
,
Donohue
,
A.
, and
Spaepen
,
F.
,
2008
, “
Effect of Sample Size on Deformation in Amorphous Metals
,”
J. Appl. Phys.
,
103
(
8
), p.
083539
.10.1063/1.2884584
32.
Valdevit
,
L.
,
Jacobsen
,
A. J.
,
Greer
,
J. R.
, and
Carter
,
W. B.
,
2011
, “
Protocols for the Optimal Design of Multi-Functional Cellular Structures: From Hypersonics to Micro-Architected Materials
,”
J. Am. Ceram. Soc.
,
94
(
S1
), pp.
s15
s34
.10.1111/j.1551-2916.2011.04599.x
33.
Lian
,
J.
,
Jang
,
D.
,
Valdevit
,
L.
,
Schaedler
,
T. A.
,
Jacobsen
,
A. J.
,
Carter
,
W. B.
, and
Greer
,
J. R.
,
2011
, “
Catastrophic Versus Gradual Collapse of Thin-Walled Nanocrystalline Ni
,”
Nano Lett.
,
11
(
10
), pp.
4118
4125
.10.1021/nl202475p
34.
Maloney
,
K. J.
,
Roper
,
C. S.
,
Jacobsen
,
A. J.
,
Carter
,
W. B.
,
Valdevit
,
L.
, and
Schaedler
,
T. A.
,
2013
, “
Microlattices as Architected Thin Films: Analysis of Mechanical Properties and High Strain Elastic Recovery
,”
APL Mater.
,
1
(
2
), p.
022106
.10.1063/1.4818168
35.
Jacobsen
,
A. J.
,
Barvosa-Carter
,
W.
, and
Nutt
,
S.
,
2007
, “
Micro-Scale Truss Structures Formed From Self-Propagating Photopolymer Waveguides
,”
Adv. Mater.
,
19
(
22
), pp.
3892
3896
.10.1002/adma.200700797
36.
Jacobsen
,
A. J.
,
Barvosa-Carter
,
W.
, and
Nutt
,
S.
,
2008
, “
Micro-Scale Truss Structures With Three-Fold and Six-Fold Symmetry Formed From Self-Propagating Polymer Waveguides
,”
Acta Mater.
,
56
(
11
), pp.
2540
2548
.10.1016/j.actamat.2008.01.051
37.
Meza
,
L. R.
, and
Greer
,
J. R.
,
2014
, “
Mechanical Characterization of Hollow Ceramic Nanolattices
,”
J. Mater. Sci.
,
49
(
6
), pp.
2496
2508
.10.1007/s10853-013-7945-x
38.
Dietiker
,
M.
,
Buzzi
,
S.
,
Pigozzi
,
G.
,
Löffler
,
J. F.
, and
Spolenak
,
R.
,
2011
, “
Deformation Behavior of Gold Nano-Pillars Prepared by Nanoimprinting and Focused Ion-Beam Milling
,”
Acta Mater.
,
59
(
5
), pp.
2180
2192
.10.1016/j.actamat.2010.12.019
39.
Volkert
,
C. A.
, and
Lilleodden
,
E. T.
,
2006
, “
Size Effects in the Deformation of Sub-Micron Au Columns
,”
Philos. Mag.
,
86
(
33–35
), pp.
5567
5579
.10.1080/14786430600567739
40.
Oh
,
S. H.
,
Legros
,
M.
,
Kiener
,
D.
, and
Dehm
,
G.
,
2009
, “
In Situ Observation of Dislocation Nucleation and Escape in a Submicrometre Aluminium Single Crystal
,”
Nat. Mater.
,
8
(
2
), pp.
95
100
.10.1038/nmat2370
41.
Gu
,
X. W.
, and
Greer
,
J. R.
,
2015
, “
Ultra-Strong Architected Cu Meso-Lattices
,”
Extreme Mech. Lett.
,
2
, pp.
7
14
.10.1016/j.eml.2015.01.006
42.
Fischer
,
J.
, and
Wegener
,
M.
,
2013
, “
Three-Dimensional Optical Laser Lithography Beyond the Diffraction Limit
,”
Laser Photonics Rev.
,
7
(
1
), pp.
22
44
.10.1002/lpor.201100046
43.
Sun
,
H.
, and
Kawata
,
S.
,
2004
, “
Two-Photon Photopolymerization and 3D Lithographic Microfabrication
,”
NMR, 3D Analysis, Photopolymerization
(Advances in Polymer Science, Vol.
170
),
Springer-Verlag
,
Berlin
, pp.
169
274
.
44.
Xiong
,
W.
,
Zhou
,
Y. S.
,
He
,
X. N.
,
Gao
,
Y.
,
Mahjouri-Samani
,
M.
,
Jiang
,
L.
,
Baldacchini
,
T.
, and
Lu
,
Y. F.
,
2012
, “
Simultaneous Additive and Subtractive Three-Dimensional Nanofabrication Using Integrated Two-Photon Polymerization and Multiphoton Ablation
,”
Light: Sci. Appl.
,
1
(
4
), p.
e6
.10.1038/lsa.2012.6
45.
LaFratta
,
C. N.
,
Fourkas
,
J. T.
,
Baldacchini
,
T.
, and
Farrer
,
R. A.
,
2007
, “
Multiphoton Fabrication
,”
Angew. Chem., Int. Ed. Engl.
,
46
(
33
), pp.
6238
6258
.10.1002/anie.200603995
46.
Jeon
,
S.
,
Malyarchuk
,
V.
,
Rogers
,
J. A.
, and
Wiederrecht
,
G. P.
,
2006
, “
Fabricating Three-Dimensional Nanostructures Using Two Photon Lithography in a Single Exposure Step
,”
Opt. Express
,
14
(
6
), pp.
2300
2308
.10.1364/OE.14.002300
47.
Sun
,
H.-B.
,
Matsuo
,
S.
, and
Misawa
,
H.
,
1999
, “
Three-Dimensional Photonic Crystal Structures Achieved With Two-Photon-Absorption Photopolymerization of Resin
,”
Appl. Phys. Lett.
,
74
(
6
), pp.
786
788
.10.1063/1.123367
48.
Tétreault
,
N.
,
von Freymann
,
G.
,
Deubel
,
M.
,
Hermatschweiler
,
M.
,
Pérez-Willard
,
F.
,
John
,
S.
,
Wegener
,
M.
, and
Ozin
,
G. A.
,
2006
, “
New Route to Three-Dimensional Photonic Bandgap Materials: Silicon Double Inversion of Polymer Templates
,”
Adv. Mater.
,
18
(
4
), pp.
457
460
.10.1002/adma.200501674
49.
Montemayor
,
L. C.
,
Meza
,
L. R.
, and
Greer
,
J. R.
,
2014
, “
Design and Fabrication of Hollow Rigid Nanolattices Via Two-Photon Lithography
,”
Adv. Eng. Mater.
,
16
(
2
), pp.
184
189
.10.1002/adem.201300254
50.
Thornton
,
J. A.
,
1975
, “
Influence of Substrate Temperature and Deposition Rate on Structure of Thick Sputtered Cu Coatings
,”
J. Vac. Sci. Technol.
,
12
(
4
), pp.
830
835
.10.1116/1.568682
51.
Thornton
,
J. A.
,
1986
, “
The Microstructure of Sputter-Deposited Coatings
,”
J. Vac. Sci. Technol., A
,
4
(
6
), pp.
3059
3065
.10.1116/1.573628
52.
Thornton
,
J. A.
,
1974
, “
Influence of Apparatus Geometry and Deposition Conditions on the Structure and Topography of Thick Sputtered Coatings
,”
J. Vac. Sci. Technol.
,
11
(
4
), pp.
666
670
.10.1116/1.1312732
53.
Valdevit
,
L.
, Dec. 2013, private communication.
54.
Oliver
,
W.
, and
Pharr
,
G.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.10.1557/JMR.1992.1564
55.
Thompson
,
C. V.
,
2000
, “
Structure Evolution During Processing of Polycrystalline Films
,”
Annu. Rev. Mater. Sci.
,
30
, pp.
159
190
.10.1146/annurev.matsci.30.1.159
You do not currently have access to this content.