Homogeneous nucleation of dislocations is the dominant dislocation generation mechanism at strain rates above 108s−1; at those rates, homogeneous nucleation dominates the plastic relaxation of shock waves in the same way that Frank–Read sources control the onset of plastic flow at low strain rates. This article describes the implementation of homogeneous nucleation in dynamic discrete dislocation plasticity (D3P), a planar method of discrete dislocation dynamics (DDD) that offers a complete elastodynamic treatment of plasticity. The implemented methodology is put to the test by studying four materials—Al, Fe, Ni, and Mo—that are shock loaded with the same intensity and a strain rate of 1010s−1. It is found that, even for comparable dislocation densities, the lattice shear strength is fundamental in determining the amount of plastic relaxation a material displays when shock loaded.

References

References
1.
Regazzoni
,
G.
,
Kocks
,
U.
, and
Follansbee
,
P.
,
1987
, “
Dislocation Kinetics at High Strain Rates
,”
Acta Metall.
,
35
(
12
), pp.
2865
2875
.10.1016/0001-6160(87)90285-9
2.
Meyers
,
M.
,
Jarmakani
,
H.
,
Bringa
,
E.
, and
Remington
,
B.
,
2009
, “
Dislocations in Shock Compression and Release
,”
Dislocations in Solids
, Vol.
15
,
J.
Hirth
and
L.
Kubin
, eds.,
North-Holland
,
Amsterdam
, pp.
94
197
.
3.
Armstrong
,
R.
,
Arnold
,
W.
, and
Zerilli
,
F.
,
2009
, “
Dislocation Mechanics of Copper and Iron in High Rate Deformation Tests
,”
J. Appl. Phys.
,
105
(
2
), p.
023511
.10.1063/1.3067764
4.
Hirth
,
J.
, and
Lothe
,
J.
,
1982
,
Theory of Dislocations
,
2nd ed.
,
Wiley
,
New York
.
5.
Gurrutxaga-Lerma
,
B.
,
Balint
,
D.
,
Dini
,
D.
, and
Sutton
,
A.
, “
On the Role of the Activation of Sources of Dislocations at High Strain Rates
,” (submitted).
6.
Wang
,
Z.
,
Beyerlein
,
I.
, and
LeSar
,
R.
,
2007
, “
The Importance of Cross-Slip in High-Rate Deformation
,”
Modell. Simul. Mater. Sci. Eng.
,
15
(
6
), pp.
675
690
.10.1088/0965-0393/15/6/006
7.
Armstrong
,
R.
,
Arnold
,
W.
, and
Zerilli
,
F.
,
2007
, “
Dislocation Mechanics of Shock-Induced Plasticity
,”
Metall. Mater. Trans. A
,
38
(
11
), pp.
2605
2610
.10.1007/s11661-007-9142-5
8.
Murr
,
L.
, and
Kuhlmann-Wilsdorf
,
D.
,
1978
, “
Experimental and Theoretical Observations on the Relationship Between Dislocation Cell Size, Dislocation Density, Residual Hardness, Peak Pressure and Pulse Duration in Shock-Loaded Nickel
,”
Acta Metall.
,
26
(
5
), pp.
847
857
.10.1016/0001-6160(78)90034-2
9.
Murr
,
L.
,
1988
,
Shock Waves in Condensed Matter—1988
,
Elsevier
,
Amsterdam
, p.
315
.
10.
Davis
,
T.
, and
Hirth
,
J.
,
1966
, “
Nucleation Rate of Vacancy Clusters in Crystals
,”
J. Appl. Phys.
,
37
(
5
), pp.
2112
2116
.10.1063/1.1708745
11.
Smith
,
C.
,
1958
, “
Metallographic Studies of Metals After Explosive Shock
,”
Trans. Met. Soc. AIME
,
212
(
10
), pp.
574
589
.
12.
Hornbogen
,
E.
,
1962
, “
Shock-Induced Dislocations
,”
Acta Metall.
,
10
(
10
), pp.
978
980
.10.1016/0001-6160(62)90153-0
13.
Meyers
,
M.
,
1978
, “
A Mechanism for Dislocation Generation in Shock-Wave Deformation
,”
Scr. Metall.
,
12
(
1
), pp.
21
26
.10.1016/0036-9748(78)90219-3
14.
Weertman
,
J.
, and
Follansbee
,
P.
,
1988
, “
Dislocation Dynamics and Plastic Shock Waves
,”
Mech. Mater.
,
7
(
3
), pp.
177
189
.10.1016/0167-6636(88)90017-8
15.
Weertman
,
J.
,
1986
, “
Plastic Deformation Behind Strong Shock Waves
,”
Mech. Mater.
,
5
(
1
), pp.
13
28
.10.1016/0167-6636(86)90012-8
16.
Swegle
,
J.
, and
Grady
,
D.
,
1985
, “
Shock Viscosity and the Prediction of Shock Wave Rise Times
,”
J. Appl. Phys.
,
58
(
2
), pp.
692
701
.10.1063/1.336184
17.
Tschopp
,
M.
, and
McDowell
,
D.
,
2008
, “
Influence of Single Crystal Orientation on Homogeneous Dislocation Nucleation Under Uniaxial Loading
,”
J. Mech. Phys. Solids
,
56
(
5
), pp.
1806
1830
.10.1016/j.jmps.2007.11.012
18.
Zaretsky
,
E.
,
1995
, “
Dislocation Multiplication Behind the Shock Front
,”
J. Appl. Phys.
,
78
(
6
), pp.
3740
3747
.10.1063/1.359954
19.
Gutkin
,
M.
, and
Ovidko
,
I.
,
2006
, “
Special Mechanism for Dislocation Nucleation in Nanomaterials
,”
Appl. Phys. Lett.
,
88
(
21
), p.
211901
.10.1063/1.2206095
20.
Gutkin
,
M.
, and
Ovidko
,
I.
,
2008
, “
Homogeneous Nucleation of Dislocation Loops in Nanocrystalline Metals and Ceramics
,”
Acta Mater.
,
56
(
7
), pp.
1642
1649
.10.1016/j.actamat.2007.12.004
21.
Aubry
,
S.
,
Kang
,
K.
,
Ryu
,
S.
, and
Cai
,
W.
,
2011
, “
Energy Barrier for Homogeneous Dislocation Nucleation: Comparing Atomistic and Continuum Models
,”
Scr. Mater.
,
64
(
11
), pp.
1043
1046
.10.1016/j.scriptamat.2011.02.023
22.
Tschopp
,
M.
, and
McDowell
,
D.
,
2007
, “
Tension-Compression Asymmetry in Homogeneous Dislocation Nucleation in Single Crystal Copper
,”
Appl. Phys. Lett.
,
90
(
12
), p.
121916
.10.1063/1.2715137
23.
Holian
,
B.
, and
Lomdahl
,
P.
,
1998
, “
Plasticity Induced by Shock Waves in Nonequilibrium Molecular-Dynamics Simulations
,”
Science
,
280
(
5372
), pp.
2349
2352
.10.1126/science.280.5372.2085
24.
Bringa
,
E.
,
Rosolankova
,
K.
,
Rudd
,
R.
,
Remington
,
B.
,
Wark
,
J.
,
Duchaineau
,
M.
,
Kalantar
,
D.
,
Hawreliak
,
J.
, and
Belak
,
J.
,
2006
, “
Shock Deformation of Face-Centred-Cubic Metals on Subnanosecond Timescales
,”
Nat. Mater.
,
5
(
10
), pp.
805
809
.10.1038/nmat1735
25.
Gurrutxaga-Lerma
,
B.
,
Balint
,
D.
,
Dini
,
D.
,
Eakins
,
D.
, and
Sutton
,
A.
,
2013
, “
A Dynamic Discrete Dislocation Plasticity Method for the Simulation of Plastic Relaxation Under Shock Loading
,”
Proc. R. Soc. London, Ser. A
,
469
(
2156
), p.
20130141
.10.1098/rspa.2013.0141
26.
LeSar
,
R.
,
2014
, “
Simulations of Dislocation Structure and Response
,”
Annu. Rev. Condens. Matter Phys.
,
5
(
1
), pp.
375
407
.10.1146/annurev-conmatphys-031113-133858
27.
Van der Giessen
,
E.
, and
Needleman
,
A.
,
1995
, “
Discrete Dislocation Plasticity: A Simple Planar Model
,”
Modell. Simul. Mater. Sci. Eng.
,
3
(
5
), pp.
689
735
.10.1088/0965-0393/3/5/008
28.
Lubarda
,
V.
,
Blume
,
J.
, and
Needleman
,
A.
,
1993
, “
An Analysis of Equilibrium Dislocation Distributions
,”
Acta Metall. Mater.
,
41
(
2
), pp.
625
642
.10.1016/0956-7151(93)90092-7
29.
Zienkiewicz
,
O.
,
2005
,
The Finite Element Method: Its Basis and Fundamentals
,
6th ed.
,
Butterworth-Heinemann
,
Oxford, UK
.
30.
Hull
,
D.
, and
Bacon
,
D. J.
,
2011
,
Introduction to Dislocations
,
5th ed.
,
Butterworth-Heinemann
,
Oxford, UK
.
31.
Markenscoff
,
X.
, and
Clifton
,
R.
,
1981
, “
The Nonuniformly Moving Edge Dislocation
,”
J. Mech. Phys. Solids
,
29
(
2
), pp.
253
262
.10.1016/0022-5096(81)90029-6
32.
Johnston
,
W.
, and
Gilman
,
J.
,
1959
, “
Dislocation Velocities, Dislocation Densities, and Plastic Flow in Lithium Fluoride Crystals
,”
J. Appl. Phys.
,
30
(
2
), pp.
129
144
.10.1063/1.1735121
33.
Olmsted
,
D.
,
Hector
,
L.
,
Curtin
,
W.
, and
Clifton
,
R.
,
2005
, “
Atomistic Simulations of Dislocation Mobility in Al, Ni and Al/Mg Alloys
,”
Modell. Simul. Mater. Sci. Eng.
,
13
(
3
), pp.
371
388
.10.1088/0965-0393/13/3/007
34.
Nix
,
W.
, and
Menezes
,
R.
,
1971
, “
Physics of Strengthening Mechanisms in Crystalline Solids
,”
Annu. Rev. Mater. Sci.
,
1
, pp.
313
346
.10.1146/annurev.ms.01.080171.001525
35.
Weertman
,
J.
,
1961
, “
High Velocity Dislocations
,”
Response of Metals to High Velocity Deformation
(Metallurgical Society Conferences, Vol.
9
),
P.
Shewmon
, and
V.
Zackay
, eds.,
Interscience
,
New York
, pp.
205
249
.
36.
Hirth
,
J.
,
Zbib
,
H.
, and
Lothe
,
J.
,
1998
, “
Forces on High Velocity Dislocations
,”
Modell. Simul. Mater. Sci. Eng.
,
6
(
2
), pp.
165
169
.10.1088/0965-0393/6/2/006
37.
Gurrutxaga-Lerma
,
B.
,
Balint
,
D.
,
Dini
,
D.
,
Eakins
,
D.
, and
Sutton
,
A.
,
2014
,
Dynamic Discrete Dislocation Plasticity
(Advances in Applied Mechanics, Vol.
47
),
Elsevier
,
London
, pp.
93
224
.10.1016/B978-0-12-800130-1.00002-3
38.
Ni
,
L.
, and
Markenscoff
,
X.
,
2008
, “
The Self-Force and Effective Mass of a Generally Accelerating Dislocation I: Screw Dislocation
,”
J. Mech. Phys. Solids
,
56
(
4
), pp.
1348
1379
.10.1016/j.jmps.2007.09.002
39.
Pillon
,
L.
,
Denoual
,
C.
, and
Pellegrini
,
Y.-P.
,
2007
, “
Equation of Motion for Dislocations With Inertial Effects
,”
Phys. Rev. B
,
76
(
22
), p.
224105
.10.1103/PhysRevB.76.224105
40.
Pellegrini
,
Y.-P.
,
2014
, “
Equation of Motion and Subsonic-Transonic Transitions of Rectilinear Edge Dislocations: A Collective-Variable Approach
,”
Phys. Rev. B
,
90
(
5
), p.
054120
.10.1103/PhysRevB.90.054120
41.
Gillis
,
P.
, and
Kratochvil
,
J.
,
1970
, “
Dislocation Acceleration
,”
Philos. Mag.
,
21
(
170
), pp.
425
432
.10.1080/14786437008238427
42.
Gilman
,
J.
,
1969
,
Micromechanics of Flow in Solids
,
McGraw-Hill
,
New York
.10.1002/9780470172278
43.
Meyers
,
M.
,
1994
,
Dynamic Behavior of Materials
,
Wiley, Hoboken
,
NJ
.
44.
Taylor
,
J.
,
1969
,
Hypervelocity Impact Phenomena
,
Academic Press
,
New York
.
45.
Shishvan
,
S.
, and
Van der Giessen
,
E.
,
2010
, “
Distribution of Dislocation Source Length and the Size Dependent Yield Strength in Freestanding Thin Films
,”
J. Mech. Phys. Solids
,
58
(
5
), pp.
678
685
.10.1016/j.jmps.2010.02.011
46.
Benzerga
,
A.
,
Bréchet
,
Y.
,
Needleman
,
A.
, and
Van der Giessen
,
E.
,
2004
, “
Incorporating Three-Dimensional Mechanisms Into Two-Dimensional Dislocation Dynamics
,”
Modell. Simul. Mater. Sci. Eng.
,
12
(
1
), pp.
159
196
.10.1088/0965-0393/12/1/014
47.
Benzerga
,
A.
,
2008
, “
An Analysis of Exhaustion Hardening in Micron-Scale Plasticity
,”
Int. J. Plast.
,
24
(
7
), pp.
1128
1157
.10.1016/j.ijplas.2007.08.010
48.
Agnihotri
,
P.
, and
Van der Giessen
,
E.
,
2012
, “
Rate Sensitivity According to Discrete Dislocation Plasticity
,” 6th International Conference on Multiscale Materials Modeling (MMM12), Biopolis, Singapore, Oct. 15–19, Paper No. MMM12-A-0139 (G).
49.
Markenscoff
,
X.
,
1980
, “
The Transient Motion of a Nonuniformly Moving Dislocation
,”
J. Elasticity
,
10
(
2
), pp.
193
201
.10.1007/BF00044503
50.
Ramesh
,
K.
,
2008
, “
High Rates and Impact Experiments
,”
Springer Handbook of Experimental Solid Mechanics
,
W.
Sharpe
, Jr.
, ed.,
Springer
,
New York
, pp.
929
960
.10.1007/978-0-387-30877-7_33
51.
Clauer
,
A.
,
Holbrook
,
J.
, and
Fairand
,
B.
,
1981
, “
Effects of Laser Induced Shock Waves on Metals
,”
Shock Waves and High-Strain-Rate Phenomena in Metals
,
Springer
,
New York
, pp.
675
702
.10.1007/978-1-4613-3219-0_38
52.
Fairand
,
B.
,
Wilcox
,
B.
,
Gallagher
,
W.
, and
Williams
,
D.
,
1972
, “
Laser Shock-Induced Microstructural and Mechanical Property Changes in 7075 Aluminum
,”
J. Appl. Phys.
,
43
(
9
), pp.
3893
3895
.10.1063/1.1661837
53.
Johnson
,
J.
,
Jones
,
O.
, and
Michaels
,
T.
,
1970
, “
Dislocation Dynamics and Single Crystal Constitutive Relations: Shock Wave Propagation and Precursor Decay
,”
J. Appl. Phys.
,
41
(
6
), pp.
2330
2339
.10.1063/1.1659227
54.
Simulia
,
D. S.
,
2013
,
ABAQUS 6.13 User's Manual
,
Dassault Systems
,
Providence, RI
.
55.
Oliphant
,
T.
,
2006
,
A Guide to NUMPY
, Vol.
1
,
Trelgol Publishing
,
Spanish Fork, UT
.
56.
Williams
,
T.
,
Kelley
,
C.
,
Broker
,
H.-B.
,
Merritt
,
E. A.
,
Campbell
,
J.
,
Cunningham
,
R.
,
Denholm
,
D.
,
Elber
,
G.
,
Fearick
,
R.
,
Grammes
,
C.
,
Hart
,
L.
,
Hecking
,
L.
,
Koenig
,
T.
,
Kotz
,
D.
,
Kubaitis
,
E.
,
Lang
,
R.
,
Lecomte
,
T.
,
Lehmann
,
A.
,
Mai
,
A.
,
Mikulik
,
P.
,
Steger
,
C.
,
Tkacik
,
T.
,
Van der Woude
,
J.
,
Woo
,
A.
,
Van Zandt
,
J. R.
, and
Zellner
,
J.
,
2010
, “
GNUPLOT 4.4: An Interactive Plotting Program
,” Official gnuplot documentation, http://sourceforge.net/projects/gnuplot
57.
Rice
,
J.
,
1987
, “
Tensile Crack Tip Fields in Elastic-Ideally Plastic Crystals
,”
Mech. Mater.
,
6
(
4
), pp.
317
335
.10.1016/0167-6636(87)90030-5
58.
Marian
,
J.
, and
Caro
,
A.
,
2006
, “
Moving Dislocations in Disordered Alloys: Connecting Continuum and Discrete Models With Atomistic Simulations
,”
Phys. Rev. B
,
74
(
2
), p.
024113
.10.1103/PhysRevB.74.024113
59.
Queyreau
,
S.
,
Marian
,
J.
,
Gilbert
,
M.
, and
Wirth
,
B.
,
2011
, “
Edge Dislocation Mobilities in bcc Fe Obtained by Molecular Dynamics
,”
Phys. Rev. B
,
84
(
6
), p.
064106
.10.1103/PhysRevB.84.064106
60.
Chang
,
J.
,
Cai
,
W.
,
Bulatov
,
V.
, and
Yip
,
S.
,
2001
, “
Dislocation Motion in BCC Metals by Molecular Dynamics
,”
Mater. Sci. Eng.: A
,
309–310
, pp.
160
163
.10.1016/S0921-5093(00)01673-7
61.
Roundy
,
D.
,
Krenn
,
C.
,
Cohen
,
M.
, and
Morris
,
J.
, Jr.
,
1999
, “
Ideal Shear Strengths of fcc Aluminum and Copper
,”
Phys. Rev. Lett.
,
82
(
13
), pp.
2713
2716
.10.1103/PhysRevLett.82.2713
62.
Gröger
,
R.
,
Bailey
,
A.
, and
Vitek
,
V.
,
2008
, “
Multiscale Modeling of Plastic Deformation of Molybdenum and Tungsten: I. Atomistic Studies of the Core Structure and Glide of 1/2〈111〉 Screw Dislocations at 0 K
,”
Acta Mater.
,
56
(
19
), pp.
5401
5411
.10.1016/j.actamat.2008.07.018
63.
Argon
,
A.
,
2008
,
Strengthening Mechanisms in Crystal Plasticity
,
Oxford University Press
,
Oxford, UK
.10.1093/acprof:oso/9780198516002.001.0001
64.
Luo
,
W.
,
Roundy
,
D.
,
Cohen
,
M.
, and
Morris
,
J.
, Jr.
,
2002
, “
Ideal Strength of bcc Molybdenum and Niobium
,”
Phys. Rev. B
,
66
(
9
), p.
094110
.10.1103/PhysRevB.66.094110
65.
Ogata
,
S.
,
Li
,
J.
,
Hirosaki
,
N.
,
Shibutani
,
Y.
, and
Yip
,
S.
,
2004
, “
Ideal Shear Strain of Metals and Ceramics
,”
Phys. Rev. B
,
70
(
10
), p.
104104
.10.1103/PhysRevB.70.104104
66.
Gouldstone
,
A.
,
Van Vliet
,
K.
, and
Suresh
,
S.
,
2001
, “
Nanoindentation: Simulation of Defect Nucleation in a Crystal
,”
Nature
,
411
(
6838
), pp.
656
656
.10.1038/35079687
67.
Bei
,
H.
,
Shim
,
S.
,
George
,
E.
,
Miller
,
M.
,
Herbert
,
E.
, and
Pharr
,
G.
,
2007
, “
Compressive Strengths of Molybdenum Alloy Micro-Pillars Prepared Using a New Technique
,”
Scr. Mater.
,
57
(
5
), pp.
397
400
.10.1016/j.scriptamat.2007.05.010
68.
Clatterbuck
,
D.
,
Chrzan
,
D.
, and
Morris
,
J.
, Jr.
,
2003
, “
The Ideal Strength of Iron in Tension and Shear
,”
Acta Mater.
,
51
(
8
), pp.
2271
2283
.10.1016/S1359-6454(03)00033-8
69.
Grady
,
D.
,
2010
, “
Structured Shock Waves and the Fourth-Power Law
,”
J. Appl. Phys.
,
107
(
1
), p.
013506
.10.1063/1.3269720
70.
Jarmakani
,
H.
,
Bringa
,
E.
,
Erhart
,
P.
,
Remington
,
B.
,
Wang
,
Y.
,
Vo
,
N.
, and
Meyers
,
M.
,
2008
, “
Molecular Dynamics Simulations of Shock Compression of Nickel: From Monocrystals to Nanocrystals
,”
Acta Mater.
,
56
(
19
), pp.
5584
5604
.10.1016/j.actamat.2008.07.052
71.
Armstrong
,
R.
, and
Walley
,
S.
,
2008
, “
High Strain Rate Properties of Metals and Alloys
,”
Int. Mater. Rev.
,
53
(
3
), pp.
105
128
.10.1179/174328008X277795
72.
Weygand
,
D.
,
Friedman
,
L.
,
Van der Giessen
,
E.
, and
Needleman
,
A.
,
2002
, “
Aspects of Boundary-Value Problem Solutions With Three-Dimensional Dislocation Dynamics
,”
Modell. Simul. Mater. Sci. Eng.
,
10
(
4
), pp.
437
468
.10.1088/0965-0393/10/4/306
73.
Meyers
,
M.
,
Gregori
,
F.
,
Kad
,
B.
,
Schneider
,
M.
,
Kalantar
,
D.
,
Remington
,
B.
,
Ravichandran
,
G.
,
Boehly
,
T.
, and
Wark
,
J.
,
2003
, “
Laser-Induced Shock Compression of Monocrystalline Copper: Characterization and Analysis
,”
Acta Mater.
,
51
(
5
), pp.
1211
1228
.10.1016/S1359-6454(02)00420-2
You do not currently have access to this content.