The shear deformation of a composite comprising elastic particles in a single crystal elastic–plastic matrix is analyzed using a discrete dislocation plasticity (DDP) framework wherein dislocation motion occurs via climb-assisted glide. The topology of the reinforcement is such that dislocations cannot continuously transverse the matrix by glide-only without encountering the particles that are impenetrable to dislocations. When dislocation motion is via glide-only, the shear stress versus strain response is strongly strain hardening with the hardening rate increasing with decreasing particle size for a fixed volume fraction of particles. This is due to the formation of dislocation pile-ups at the particle/matrix interfaces. The back stresses associated with these pile-ups result in a size effect and a strong Bauschinger effect. By contrast, when dislocation climb is permitted, the dislocation pile-ups break up by forming lower energy dislocation wall structures at the particle/matrix interfaces. This results in a significantly reduced size effect and reduced strain hardening. In fact, with increasing climb mobility an “inverse size” effect is also predicted where the strength decreases with decreasing particle size. Mass transport along the matrix/particle interface by dislocation climb causes this change in the response and also results in a reduction in the lattice rotations and density of geometrically necessary dislocations (GNDs) compared to the case where dislocation motion is by glide-only.

References

References
1.
Bao
,
G.
,
Hutchinson
,
J. W.
, and
McMeeking
,
R. M.
,
1991
, “
Particle Reinforcement of Ductile Matrices Against Plastic Flow and Creep
,”
Acta Metall. Mater.
,
39
(
8
), pp.
1871
1882
.10.1016/0956-7151(91)90156-U
2.
Christman
,
T.
,
Needleman
,
A.
, and
Suresh
,
S.
,
1989
, “
An Experimental and Numerical Study of Deformation in Metal-Ceramic Composites
,”
Acta Metall.
,
37
(
11
), p.
30293050
.10.1016/0001-6160(89)90339-8
3.
Kamat
,
S. V.
,
Hirth
,
J. P.
, and
Mehrabian
,
R.
,
1989
, “
Mechanical Properties of Particulate-Reinforced Aluminum-Matrix Composites
,”
Acta Metall.
,
37
(
9
), p.
23952402
.10.1016/0001-6160(89)90037-0
4.
Cleveringa
,
H. H. M.
,
VanderGiessen
,
E.
, and
Needleman
,
A.
,
1997
, “
Comparison of Discrete Dislocation and Continuum Plasticity Predictions for a Composite Material
,”
Acta Mater.
,
45
(
8
), pp.
3163
3179
.10.1016/S1359-6454(97)00011-6
5.
Cottura
,
M.
,
Le Bouar
,
Y.
,
Finel
,
A.
,
Appolaire
,
B.
,
Ammar
,
K.
, and
Forest
,
S.
,
2012
, “
A Phase Field Model Incorporating Strain Gradient Viscoplasticity: Application to Rafting in Ni-Base Superalloys
,”
J. Mech. Phys. Solids
,
60
(
7
), pp.
1243
1256
.10.1016/j.jmps.2012.04.003
6.
Zhu
,
Z.
,
Basoalto
,
H.
,
Warnken
,
N.
, and
Reed
,
R. C.
,
2012
, “
A Model for the Creep Deformation Behaviour of Nickel-Based Single Crystal Superalloys
,”
Acta Mater.
,
60
(
12
), pp.
4888
4900
.10.1016/j.actamat.2012.05.023
7.
Artz
,
E.
,
1998
, “
Size Effects in Materials Due to Micro-Structural and Dimensional Constraints: A Comparative Review
,”
Acta Mater.
,
46
(
16
), pp.
5611
5626
.10.1016/S1359-6454(98)00231-6
8.
Brown
,
L. M.
,
1997
, “
Transition From Laminar to Rotational Motion in Plasticity
,”
Philos. Trans. R. Soc. A
,
355
(
1731
), pp.
1979
1990
.10.1098/rsta.1997.0100
9.
Lee
,
G.
,
Kim
,
J -Y.
,
Burek
,
M. J.
,
Greer
,
J. R.
, and
Ting
,
Y. T.
,
2011
, “
Plastic Deformation of Indium Nanostructures
,”
Mater. Sci. Eng. A
,
528
(
19–20
), pp.
6112
6120
.10.1016/j.msea.2011.04.065
10.
Greer
,
J. R.
,
Oliver
,
W. C.
, and
Nix
,
W. D.
,
2005
, “
Size Dependence of Mechanical Properties of Gold at the Micron Scale in the Absence of Strain Gradients
,”
Acta Mater.
,
53
(
6
), pp.
1821
1830
.10.1016/j.actamat.2004.12.031
11.
Uchic
,
M.
,
Dimiduk
,
D.
,
Florando
,
J.
, and
Nix
,
W. D.
,
2004
, “
Sample Dimensions Influence Strength and Crystal Plasticity
,”
Science
,
305
(
5686
), pp.
986
989
.10.1126/science.1098993
12.
Franke
,
O.
,
Trenkle
,
J. C.
, and
Schuh
,
C. A.
,
2010
, “
Temperature Dependence of the Indentation Size Effect
,”
J. Mater. Res.
,
25
(7), pp.
1225
1229
.10.1557/JMR.2010.0159
13.
Mordehai
,
D.
,
Clouet
,
E.
,
Fivel
,
M.
, and
Verdier
,
M.
,
2008
, “
Introducing Dislocation Climb by Bulk Diffusion in Discrete Dislocation Dynamics
,”
Philos. Mag.
,
88
(
6
), pp.
899
925
.10.1080/14786430801992850
14.
Ayas
,
C.
, and
Van der Giessen
,
E.
,
2009
, “
Stress Relaxation in Thin Film/Substrate Systems by Grain Boundary Diffusion: A Discrete Dislocation Framework
,”
Modell. Simul. Mater. Sci. Eng.
,
17
(6), p.
064007
.10.1088/0965-0393/17/6/064007
15.
Xiang
,
Y.
, and
Srolovitz
,
D. J.
,
2006
, “
Dislocation Climb Effects on Particle Bypass Mechanisms
,”
Philos. Mag.
,
86
(25–26), pp.
3937
3957
.10.1080/14786430600575427
16.
Bako
,
B.
,
Groma
,
I.
,
Gyorgyi
,
G.
, and
Zimanyi
,
G.
,
2006
, “
Dislocation Patterning: The Role of Climb in Meso-Scale Simulations
,”
Comput. Mater. Sci.
,
38
(1), pp.
22
28
.10.1016/j.commatsci.2005.12.034
17.
Raabe
,
D.
,
1998
, “
On the Consideration of Climb in Discrete Dislocation Dynamics
,”
Philos. Mag. A
,
77
(
3
), pp.
751
759
.10.1080/01418619808224081
18.
Hafez
,
S. M.
,
Haghighat
,
G. E.
, and
Raabe
,
D.
,
2013
, “
Effect of Climb on Dislocation Mechanisms and Creep Rates in γ'-Strengthened Ni Base Superalloy Single Crystals: A Discrete Dislocation Dynamics Study
,”
Acta Mater.
,
61
(
10
), pp.
3709
3723
.10.1016/j.actamat.2013.03.003
19.
Ayas
,
C.
,
Deshpande
,
V. S.
, and
Geers
,
M. G. D.
,
2012
, “
Tensile Response of Passivated Films With Climb-Assisted Dislocation Glide
,”
J. Mech. Phys. Solids
,
60
(
9
), pp.
1626
1643
.10.1016/j.jmps.2012.05.001
20.
Danas
,
K.
, and
Deshpande
,
V. S.
,
2013
, “
Plane-Strain Discrete Dislocation Plasticity With Climb-Assisted Glide Motion of Dislocations
,”
Modell. Simul. Mater. Sci. Eng.
,
21
(
4
), p.
045008
.10.1088/0965-0393/21/4/045008
21.
Davoudi
,
K. M.
,
Nicola
,
L.
, and
Vlassak
,
J. J.
,
2012
, “
Dislocation Climb in Two-Dimensional Discrete Dislocation Dynamics
,”
J. Appl. Phys.
,
111
(10), p.
103522
.10.1063/1.4718432
22.
Hirth
,
J. P.
, and
Lothe
,
J.
,
1968
,
Theory of Dislocations
,
McGraw-Hill
,
New York
.
23.
Keralavarma
,
S. M.
,
Cagin
,
T.
,
Arsenlis
,
A.
, and
Benzerga
,
A. A.
,
2012
, “
Power-Law Creep From Discrete Dislocation Dynamics
,”
Phys. Rev. Lett.
,
109
(26-28), p.
265504
.10.1103/PhysRevLett.109.265504
24.
Ayas
,
C.
,
van Dommelen
,
J. A. W.
, and
Deshpande
,
V. S.
,
2014
, “
Climb-Enabled Discrete Dislocation Plasticity
,”
J. Mech. Phys. Solids
,
62
, pp.
113
136
.10.1016/j.jmps.2013.09.019
25.
Van der Giessen
,
E.
, and
Needleman
,
A.
,
1995
, “
Discrete Dislocation Plasticity: A Simple Planar Model
,”
Modell. Simul. Mater. Sci. Eng.
,
3
(
5
), pp.
689
735
.10.1088/0965-0393/3/5/008
26.
Kubin
,
L. P.
,
Canova
,
G.
,
Condat
,
M.
,
Devincre
,
B.
,
Pontikis
,
V.
, and
Brechet
,
Y.
,
1992
, “
Dislocation Microstructures and Plastic Flow: A 3D Simulation
,”
Solid State Phenom.
,
23–24
, pp.
455
472
.10.4028/www.scientific.net/SSP.23-24.455
27.
Hussein
,
M. I.
,
Borg
,
U.
,
Niordson
,
C. F.
, and
Deshpande
,
V. S.
,
2008
, “
Plasticity Size Effects in Voided Crystals
,”
J. Mech. Phys. Solids
,
56
(
1
), pp.
114
131
.10.1016/j.jmps.2007.05.004
28.
Ashby
,
M. F.
,
1970
, “
The Deformation of Plastically Non-Homogeneous Materials
,”
Philos. Mag.
,
21
(
170
), pp.
399
424
.10.1080/14786437008238426
29.
Cleveringa
,
H. H. M.
,
Van der Giessen
,
E.
, and
Needleman
,
A.
,
1999
, “
A Discrete Dislocation Analysis of Residual Stresses in a Composite Material
,”
Philos. Mag. A
,
79
(
4
), pp.
893
920
.10.1080/01418619908210338
You do not currently have access to this content.