A micromechanics-based yield criterion is developed for a porous ductile material deforming by localized plasticity in combined tension and shear. The new criterion is primarily intended to model void coalescence by internal necking or internal shearing. The model is obtained by limit analysis and homogenization of a cylindrical cell containing a coaxial cylindrical void of finite height. Plasticity in parts of the matrix is modeled using rate-independent J2 flow theory. It is shown that for the discontinuous, yet kinematically admissible trial velocity fields used in the limit analysis procedure, the overall yield domain exhibits curved parts and flat parts with no vertices. Model predictions are compared with available finite-element (FE) based estimates of limit loads on cubic cells. In addition, a heuristic modification to the model is proposed in the limit case of penny-shape cracks to enable its application to materials failing after limited void growth as well as to situations of shear-induced void closure.

References

References
1.
Bao
,
Y.
, and
Wierzbicki
,
T.
,
2004
, “
On Fracture Locus in the Equivalent Strain and Stress Triaxiality Space
,”
Int. J. Mech. Sci.
,
46
(
1
), pp.
81
98
.10.1016/j.ijmecsci.2004.02.006
2.
Barsoum
,
I.
, and
Faleskog
,
J.
,
2007
, “
Rupture Mechanisms in Combined Tension and Shear-Experiments
,”
Int. J. Solids Struct.
,
44
(
6
), pp.
1768
1786
.10.1016/j.ijsolstr.2006.09.031
3.
Haltom
,
S. S.
,
Kyriakides
,
S.
, and
Ravi-Chandar
,
K.
,
2013
, “
Ductile Failure Under Combined Shear and Tension
,”
Int. J. Solids Struct.
,
50
(
10
), pp.
1507
1522
.10.1016/j.ijsolstr.2012.12.009
4.
Johnson
,
G. R.
,
Hoegfeldt
,
J. M.
,
Lindholm
,
U. S.
, and
Nagy
,
A.
,
1983
, “
Response of Various Metals to Large Torsional Strains Over a Large Range of Strain Rates—Part 1: Ductile Metals
,”
ASME J. Eng. Mater. Technol.
,
105
(
1
), pp.
42
47
.10.1115/1.3225617
5.
Bai
,
Y.
, and
Wierzbicki
,
T.
,
2008
, “
A New Model of Metal Plasticity and Fracture With Pressure and Lode Dependence
,”
Int. J. Plast.
,
24
(
6
), pp.
1071
1096
.10.1016/j.ijplas.2007.09.004
6.
Nahshon
,
K.
, and
Hutchinson
,
J. W.
,
2008
, “
Modification of the Gurson Model for Shear Failure
,”
Eur. J. Mech.
,
27
(
1
), pp.
1
17
.10.1016/j.euromechsol.2007.08.002
7.
Barsoum
,
I.
, and
Faleskog
,
J.
,
2007
, “
Rupture Mechanisms in Combined Tension and Shear-Micromechanics
,”
Int. J. Solids Struct.
,
44
(
17
), pp.
5481
5498
.10.1016/j.ijsolstr.2007.01.010
8.
Achouri
,
M.
,
Germain
,
G.
,
Dal Santo
,
P.
, and
Saidane
,
D.
,
2013
, “
Experimental Characterization and Numerical Modeling of Micromechanical Damage Under Different Stress States
,”
Mater. Des.
,
50
, pp.
207
222
.10.1016/j.matdes.2013.02.075
9.
Needleman
,
A.
,
1987
, “
A Continuum Model for Void Nucleation by Inclusion Debonding
,”
ASME J. Appl. Mech.
,
54
(
3
), pp.
525
531
.10.1115/1.3173064
10.
Fleck
,
N. A.
,
Hutchinson
,
J. W.
, and
Tvergaard
,
V.
,
1989
, “
Softening by Void Nucleation and Growth in Tension and Shear
,”
J. Mech. Phys. Solids
,
37
(
4
), pp.
515
540
.10.1016/0022-5096(89)90027-6
11.
Siruguet
,
K.
, and
Leblond
,
J.-B.
,
2004
, “
Effect of Void Locking by Inclusions Upon the Plastic Behavior of Porous Ductile Solids—I: Theoretical Modeling and Numerical Study of Void Growth
,”
Int. J. Plast.
,
20
(
2
), pp.
225
254
.10.1016/S0749-6419(03)00018-4
12.
Weck
,
A.
, and
Wilkinson
,
D. S.
,
2008
, “
Experimental Investigation of Void Coalescence in Metallic Sheets Containing Laser Drilled Holes
,”
Acta Mater.
,
56
(
8
), pp.
1774
1784
.10.1016/j.actamat.2007.12.035
13.
Tvergaard
,
V.
,
2008
, “
Shear Deformation of Voids With Contact Modeled by Internal Pressure
,”
Int. J. Mech. Sci.
,
50
(
10–11
), pp.
1459
1465
.10.1016/j.ijmecsci.2008.08.007
14.
Tvergaard
,
V.
,
2012
, “
Effect of Stress-State and Spacing on Voids in a Shear-Field
,”
Int. J. Solids Struct.
,
49
(
22
), pp.
3047
3054
.10.1016/j.ijsolstr.2012.06.008
15.
McClintock
,
F. A.
,
1966
, “
Ductile Fracture by Hole Growth in Shear Bands
,”
Int. J. Fract. Mech.
,
2
(
4
), pp.
614
627
.10.1007/BF00184558
16.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1986
, “
Void Growth in Shear
,”
Proc. R. Soc. London A
,
407
(
1833
), pp.
435
458
.10.1098/rspa.1986.0104
17.
Nielsen
,
K. L.
,
Dahl
,
J.
, and
Tvergaard
,
V.
,
2012
, “
Collapse and Coalescence of Spherical Voids Subject to Intense Shearing: Studied in Full 3D
,”
Int. J. Fract.
,
177
(
2
), pp.
97
108
.10.1007/s10704-012-9757-4
18.
Dunand
,
M.
, and
Mohr
,
D.
,
2014
, “
Effect of Lode Parameter on Plastic Flow Localization After Proportional Loading at Low Stress Triaxialities
,”
J. Mech. Phys. Solids
,
66
(
1
), pp.
133
153
.10.1016/j.jmps.2014.01.008
19.
Rice
,
J. R.
, and
Tracey
,
D. M.
,
1969
, “
On the Enlargement of Voids in Triaxial Stress Fields
,”
J. Mech. Phys. Solids
,
17
(
3
), pp.
201
217
.10.1016/0022-5096(69)90033-7
20.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media
,”
ASME J. Eng. Mater. Technol.
,
99
(
1
), pp.
2
15
.10.1115/1.3443401
21.
Chu
,
C.
, and
Needleman
,
A.
,
1980
, “
Void Nucleation Effects in Biaxially Stretched Sheets
,”
ASME J. Eng. Mater. Technol.
,
102
(
3
), pp.
249
256
.10.1115/1.3224807
22.
Tvergaard
,
V.
, and
Needleman
,
A.
,
1984
, “
Analysis of the Cup–Cone Fracture in a Round Tensile Bar
,”
Acta Metall.
,
32
(
1
), pp.
157
169
.10.1016/0001-6160(84)90213-X
23.
Shen
,
Y.
,
Morgeneyer
,
T. F.
,
Garnier
,
J.
,
Allais
,
L.
,
Helfen
,
L.
, and
Crepin
,
J.
,
2013
, “
Three-Dimensional Quantitative In Situ Study of Crack Initiation and Propagation in AA6061 Aluminum Alloy Sheets Via Synchrotron Laminography and Finite-Element Simulations
,”
Acta Mater.
,
61
(
7
), pp.
2571
2582
.10.1016/j.actamat.2013.01.035
24.
Kondori
,
B.
,
2015
, “
Ductile Fracture of Magnesium Alloys: Characterization and Modeling
,” Ph.D. thesis, Texas A&M University, College Station, TX.
25.
Benzerga
,
A. A.
,
Besson
,
J.
, and
Pineau
,
A.
,
1999
, “
Coalescence–Controlled Anisotropic Ductile Fracture
,”
ASME J. Eng. Mater. Technol.
,
121
(
2
), pp.
221
229
.10.1115/1.2812369
26.
Benzerga
,
A. A.
, and
Leblond
,
J.-B.
,
2010
, “
Ductile Fracture by Void Growth to Coalescence
,”
Adv. Appl. Mech.
,
44
, pp.
169
305
.10.1016/S0065-2156(10)44003-X
27.
Benzerga
,
A. A.
, and
Leblond
,
J.-B.
,
2014
, “
Effective Yield Criterion Accounting for Microvoid Coalescence
,”
ASME J. Appl. Mech.
,
81
(
3
), p.
031009
.10.1115/1.4024908
28.
Koplik
,
J.
, and
Needleman
,
A.
,
1988
, “
Void Growth and Coalescence in Porous Plastic Solids
,”
Int. J. Solids Struct.
,
24
(
8
), pp.
835
853
.10.1016/0020-7683(88)90051-0
29.
Scheyvaerts
,
F.
,
Onck
,
P. R.
,
Tekoglu
,
C.
, and
Pardoen
,
T.
,
2011
, “
The Growth and Coalescence of Ellipsoidal Voids in Plane Strain Under Combined Shear and Tension
,”
J. Mech. Phys. Solids
,
59
(
2
), pp.
373
397
.10.1016/j.jmps.2010.10.003
30.
Richelsen
,
A. B.
, and
Tvergaard
,
V.
,
1994
, “
Dilatant Plasticity or Upper Bound Estimates for Porous Ductile Solids
,”
Acta Metall. Mater.
,
42
(
8
), pp.
2561
2577
.10.1016/0956-7151(94)90198-8
31.
Pardoen
,
T.
, and
Hutchinson
,
J. W.
,
2000
, “
An Extended Model for Void Growth and Coalescence
,”
J. Mech. Phys. Solids
,
48
(
12
), pp.
2467
2512
.10.1016/S0022-5096(00)00019-3
32.
Gologanu
,
M.
,
Leblond
,
J.-B.
, and
Devaux
,
J.
,
1993
, “
Approximate Models for Ductile Metals Containing Non-Spherical Voids—Case of Axisymmetric Prolate Ellipsoidal Cavities
,”
J. Mech. Phys. Solids
,
41
(
11
), pp.
1723
1754
.10.1016/0022-5096(93)90029-F
33.
Gologanu
,
M.
,
Leblond
,
J.-B.
, and
Devaux
,
J.
,
1994
, “
Approximate Models for Ductile Metals Containing Non-Spherical Voids—Case of Axisymmetric Oblate Ellipsoidal Cavities
,”
ASME J. Eng. Mater. Technol.
,
116
(
3
), pp.
290
297
.10.1115/1.2904290
34.
Ponte Castañeda
,
P.
, and
Zaidman
,
M.
,
1994
, “
Constitutive Models for Porous Materials With Evolving Microstructure
,”
J. Mech. Phys. Solids
,
42
(
9
), pp.
1459
1495
.10.1016/0022-5096(94)90005-1
35.
Danas
,
K.
, and
Ponte Castañeda
,
P.
,
2009
, “
A Finite-Strain Model for Anisotropic Viscoplastic Porous Media: I—Theory
,”
Eur. J. Mech.
,
28
(
3
), pp.
387
401
.10.1016/j.euromechsol.2008.11.002
36.
Keralavarma
,
S. M.
, and
Benzerga
,
A. A.
,
2010
, “
A Constitutive Model for Plastically Anisotropic Solids With Non-Spherical Voids
,”
J. Mech. Phys. Solids
,
58
(
6
), pp.
874
901
.10.1016/j.jmps.2010.03.007
37.
Madou
,
K.
, and
Leblond
,
J.-B.
,
2012
, “
A Gurson-Type Criterion for Porous Ductile Solids Containing Arbitrary Ellipsoidal Voids—I: Limit-Analysis of Some Representative Cell
,”
J. Mech. Phys. Solids
,
60
(
5
), pp.
1020
1036
.10.1016/j.jmps.2011.11.008
38.
Madou
,
K.
,
Leblond
,
J.-B.
, and
Morin
,
L.
,
2013
, “
Numerical Studies of Porous Ductile Materials Containing Arbitrary Ellipsoidal Voids—II: Evolution of the Length and Orientation of the Void Axes
,”
Eur. J. Mech.
,
42
, pp.
490
507
.10.1016/j.euromechsol.2013.06.005
39.
Benzerga
,
A. A.
,
Besson
,
J.
, and
Pineau
,
A.
,
2004
, “
Anisotropic Ductile Fracture: Part I: Experiments
,”
Acta Mater.
,
52
(
15
), pp.
4623
4638
.10.1016/j.actamat.2004.06.020
40.
Benzerga
,
A. A.
,
Besson
,
J.
, and
Pineau
,
A.
,
2004
, “
Anisotropic Ductile Fracture: Part II: Theory
,”
Acta Mater.
,
52
(
15
), pp.
4639
4650
.10.1016/j.actamat.2004.06.019
41.
Thomason
,
P. F.
,
1985
, “
Three-Dimensional Models for the Plastic Limit-Loads at Incipient Failure of the Intervoid Matrix in Ductile Porous Solids
,”
Acta Metall.
,
33
(
6
), pp.
1079
1085
.10.1016/0001-6160(85)90201-9
42.
Benzerga
,
A. A.
,
2002
, “
Micromechanics of Coalescence in Ductile Fracture
,”
J. Mech. Phys. Solids
,
50
(
6
), pp.
1331
1362
.10.1016/S0022-5096(01)00125-9
43.
Leblond
,
J.-B.
, and
Mottet
,
G.
,
2008
, “
A Theoretical Approach of Strain Localization Within Thin Planar Bands in Porous Ductile Materials
,”
C. R. Mec.
,
336
(
1–2
), pp.
176
189
.10.1016/j.crme.2007.11.008
44.
Gologanu
,
M.
,
Leblond
,
J.-B.
,
Perrin
,
G.
, and
Devaux
,
J.
,
2001
, “
Theoretical Models for Void Coalescence in Porous Ductile Solids. I. Coalescence in ‘Layers'
,”
Int. J. Solids Struct.
,
38
(
32–33
), pp.
5581
5594
.10.1016/S0020-7683(00)00354-1
45.
Gologanu
,
M.
,
Leblond
,
J.-B.
,
Perrin
,
G.
, and
Devaux
,
J.
,
2001
, “
Theoretical Models for Void Coalescence in Porous Ductile Solids. II. Coalescence in ‘Columns'
,”
Int. J. Solids Struct.
,
38
(
32–33
), pp.
5595
5604
.10.1016/S0020-7683(00)00355-3
46.
Tekoglu
,
C.
,
Leblond
,
J.-B.
, and
Pardoen
,
T.
,
2012
, “
A Criterion for the Onset of Void Coalescence Under Combined Tension and Shear
,”
J. Mech. Phys. Solids
,
60
(
7
), pp.
1363
1381
.10.1016/j.jmps.2012.02.006
47.
Morin
,
L.
,
Leblond
,
J.-B.
, and
Benzerga
,
A. A.
,
2015
, “
Coalescence of Voids by Internal Necking: Theoretical Estimates and Numerical Results
,”
J. Mech. Phys. Solids
,
75
, pp.
140
158
.10.1016/j.jmps.2014.11.009
48.
Morin
,
L.
,
Leblond
,
J.-B.
,
Benzerga
,
A. A.
, and
Kondo
,
D.
,
2015
, “
A Unified Criterion for the Growth and Coalescence of Microvoids
,”
J. Mech. Phys. Solids
(submitted).
49.
Benzerga
,
A. A.
,
Besson
,
J.
,
Batisse
,
R.
, and
Pineau
,
A.
,
2002
, “
Synergistic Effects of Plastic Anisotropy and Void Coalescence on Fracture Mode in Plane Strain
,”
Modell. Simul. Mater. Sci. Eng.
,
10
(
1
), pp.
73
102
.10.1088/0965-0393/10/1/306
50.
Kondori
,
B.
, and
Benzerga
,
A. A.
,
2014
, “
Effect of Stress Triaxiality on the Flow and Fracture of Mg Alloy AZ31
,”
Metall. Mater. Trans. A
,
45
(
8
), pp.
3292
3307
.10.1007/s11661-014-2211-7
51.
Gologanu
,
M.
,
1997
, “
Etude de Quelques Problèmes de Rupture Ductile des Métaux
,” Ph.D. thesis, Université Paris 6, Paris, France.
52.
Collins
,
I. F.
, and
Houlsby
,
G. T.
,
1997
, “
Application of Thermomechanical Principles to the Modelling of Geotechnical Materials
,”
Proc. R. Soc. London A
,
453
(
1964
), pp.
1975
2001
.10.1098/rspa.1997.0107
53.
Einav
,
I.
, and
Carter
,
J. P.
,
2007
, “
On Convexity, Normality, Pre-Consolidation Pressure, and Singularities in Modelling of Granular Materials
,”
Granular Matter
,
9
(
1–2
), pp.
87
96
.10.1007/s10035-006-0025-z
You do not currently have access to this content.