Strain gradient effects are commonly modeled as the origin of the size dependence of material strength, such as the dependence of indentation hardness on contact depth and spherical indenter radius. However, studies on the microstructural comparisons of experiments and theories are limited. First, we have extended a strain gradient Mises-plasticity model to its crystal plasticity version and implemented a finite element method to simulate the load–displacement response and the lattice rotation field of Cu single crystals under spherical indentation. The strain gradient simulations demonstrate that the forming of distinct sectors of positive and negative angles in the lattice rotation field is governed primarily by the slip geometry and crystallographic orientations, depending only weakly on strain gradient effects, although hardness depends strongly on strain gradients. Second, the lattice rotation simulations are compared quantitatively with micron resolution, three-dimensional X-ray microscopy (3DXM) measurements of the lattice rotation fields under 100 mN force, 100 μm radius spherical indentations in 111, 110, and 001 oriented Cu single crystals. Third, noting the limitation of continuum strain gradient crystal plasticity models, two-dimensional discrete dislocation simulation results suggest that the hardness in the nanocontact regime is governed synergistically by a combination of strain gradients and source-limited plasticity. However, the lattice rotation field in the discrete dislocation simulations is found to be insensitive to these two factors but to depend critically on dislocation obstacle densities and strengths.

References

References
1.
Vinci
,
R. P.
, and
Vlassak
,
J. J.
,
1996
, “
Mechanical Behavior of Thin Films
,”
Annu. Rev. Mater. Res.
,
26
, pp.
431
462
.10.1146/annurev.ms.26.080196.002243
2.
Nix
,
W. D.
,
Greer
,
J. R.
,
Feng
,
G.
, and
Lilleodden
,
E. T.
,
2007
, “
Deformation at the Nanometer and Micrometer Length Scales: Effects of Strain Gradients and Dislocation Starvation
,”
Thin Solid Films
,
515
(
6
), pp.
3152
3157
.10.1016/j.tsf.2006.01.030
3.
Pharr
,
G. M.
,
Herbert
,
E. G.
, and
Gao
,
Y. F.
,
2010
, “
The Indentation Size Effect: A Critical Examination of Experimental Observations and Mechanistic Interpretations
,”
Annu. Rev. Mater. Res.
,
40
, pp.
271
292
.10.1146/annurev-matsci-070909-104456
4.
Asaro
,
R. J.
,
1983
, “
Micromechanics of Crystals and Polycrystals
,”
Adv. Appl. Mech.
,
23
, pp.
1
115
.10.1016/S0065-2156(08)70242-4
5.
Bassani
,
J. L.
,
1993
, “
Plastic Flow of Crystals
,”
Adv. Appl. Mech.
,
30
, pp.
191
258
.10.1016/S0065-2156(08)70175-3
6.
Needleman
,
A.
,
2000
, “
Computational Mechanics at the Mesoscale
,”
Acta Mater.
,
48
(
1
), pp.
105
124
.10.1016/S1359-6454(99)00290-6
7.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.10.1557/JMR.1992.1564
8.
Fleck
,
N. A.
,
Muller
,
G. M.
,
Ashby
,
M. F.
, and
Hutchinson
,
J. W.
,
1994
, “
Strain Gradient Plasticity: Theory and Experiments
,”
Acta Metall. Mater.
,
42
(
2
), pp.
475
487
.10.1016/0956-7151(94)90502-9
9.
Ma
,
Q.
, and
Clarke
,
D. R.
,
1995
, “
Size Dependent Hardness of Silver Single Crystals
,”
J. Mater. Res.
,
10
(
4
), pp.
853
863
.10.1557/JMR.1995.0853
10.
Stolken
,
J. S.
, and
Evans
,
A. G.
,
1998
, “
A Microbend Test Method for Measuring the Plasticity Length Scale
,”
Acta Mater.
,
46
(
14
), pp.
5109
5115
.10.1016/S1359-6454(98)00153-0
11.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
2004
, “
Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinement to Methodology
,”
J. Mater. Res.
,
19
(
1
), pp.
3
20
.10.1557/jmr.2004.19.1.3
12.
McElhaney
,
K. W.
,
Vlassak
,
J. J.
, and
Nix
,
W. D.
,
1998
, “
Determination of Indenter Tip Geometry and Indentation Contact Area for Depth-Sensing Indentation Experiments
,”
J. Mater. Res.
,
13
(
5
), pp.
1300
1306
.10.1557/JMR.1998.0185
13.
Nix
,
W. D.
, and
Gao
,
H.
,
1998
, “
Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
46
(
2
), pp.
411
425
.10.1016/S0022-5096(97)00086-0
14.
Swadener
,
J. G.
,
George
,
E. P.
, and
Pharr
,
G. M.
,
2002
, “
The Correlation of the Indentation Size Effect Measured With Indenters of Various Shapes
,”
J. Mech. Phys. Solids
,
50
(
4
), pp.
681
694
.10.1016/S0022-5096(01)00103-X
15.
Feng
,
G.
, and
Nix
,
W. D.
,
2004
, “
Indentation Size Effect in MgO
,”
Scr. Mater.
,
51
(
6
), pp.
599
603
.10.1016/j.scriptamat.2004.05.034
16.
Balint
,
D. S.
,
Deshpande
,
V. S.
,
Needleman
,
A.
, and
van der Giessen
,
E.
,
2006
, “
Discrete Dislocation Plasticity Analysis of the Wedge Indentation of Films
,”
J. Mech. Phys. Solids
,
54
(
11
), pp.
2281
2303
.10.1016/j.jmps.2006.07.004
17.
Nicola
,
L.
,
Bower
,
A. F.
,
Kim
,
K.-S.
,
Needleman
,
A.
, and
van der Giessen
,
E.
,
2007
, “
Surface Versus Bulk Nucleation of Dislocations During Contact
,”
J. Mech. Phys. Solids
,
55
(
6
), pp.
1120
1144
.10.1016/j.jmps.2006.12.005
18.
Zhang
,
Y. H.
,
Gao
,
Y. F.
, and
Nicola
,
L.
,
2014
, “
Lattice Rotation Caused by Wedge Indentation of a Single Crystal: Dislocation Dynamics Compared to Crystal Plasticity Simulations
,”
J. Mech. Phys. Solids
,
68
, pp.
267
279
.10.1016/j.jmps.2014.04.006
19.
Li
,
T. L.
,
Bei
,
H.
,
Morris
,
J. R.
,
George
,
E. P.
, and
Gao
,
Y. F.
,
2012
, “
Scale Effects in the Convoluted Thermal/Spatial Statistics of Plasticity Initiation in Small Stressed Volumes During Nanoindentation
,”
Mater. Sci. Technol.
,
28
(
9–10
), pp.
1055
1059
.10.1179/1743284712Y.0000000007
20.
Nye
,
J. F.
,
1953
, “
Some Geometrical Relations in Dislocated Solids
,”
Acta Metall.
,
1
(
2
), pp.
153
162
.10.1016/0001-6160(53)90054-6
21.
Ashby
,
M. F.
,
1970
, “
The Deformation of Plastically Non-Homogeneous Materials
,”
Philos. Mag.
,
21
(
170
), pp.
399
424
.10.1080/14786437008238426
22.
Arsenlis
,
A.
, and
Parks
,
D. M.
,
1999
, “
Crystallographic Aspects of Geometrically-Necessary and Statistically-Stored Dislocation Density
,”
Acta Mater.
,
47
(
5
), pp.
1597
1611
.10.1016/S1359-6454(99)00020-8
23.
Mughrabi
,
H.
,
2006
, “
Dual Role of Deformation-Induced Geometrically Necessary Dislocations With Respect to Lattice Plane Misorientations and/or Long-Range Internal Stresses
,”
Acta Mater.
,
54
(
13
), pp.
3417
3427
.10.1016/j.actamat.2006.03.047
24.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1997
, “
Strain Gradient Plasticity
,”
Adv. Appl. Mech.
,
33
, pp.
295
361
.10.1016/S0065-2156(08)70388-0
25.
Gao
,
H.
,
Huang
,
Y.
,
Nix
,
W. D.
, and
Hutchinson
,
J. W.
,
1999
, “
Mechanism-Based Strain Gradient Plasticity—I. Theory
,”
J. Mech. Phys. Solids
,
47
(
6
), pp.
1239
1263
.10.1016/S0022-5096(98)00103-3
26.
Huang
,
Y.
,
Gao
,
H.
,
Nix
,
W. D.
, and
Hutchinson
,
J. W.
,
1999
, “
Mechanism-Based Strain Gradient Plasticity—II. Analysis
,”
J. Mech. Phys. Solids
,
48
(
1
), pp.
99
128
.10.1016/S0022-5096(99)00022-8
27.
Acharya
,
A.
, and
Bassani
,
J. L.
,
2000
, “
Lattice Incompatibility and a Gradient Theory of Crystal Plasticity
,”
J. Mech. Phys. Solids
,
48
(
8
), pp.
1565
1595
.10.1016/S0022-5096(99)00075-7
28.
Gurtin
,
M. E.
,
2000
, “
On the Plasticity of Single Crystals: Free Energy, Microforces, Plastic-Strain Gradient
,”
J. Mech. Phys. Solids
,
48
(
5
), pp.
989
1036
.10.1016/S0022-5096(99)00059-9
29.
Gurtin
,
M. E.
,
2002
, “
A Gradient Theory of Single-Crystal Viscoplasticity That Accounts for Geometrically Necessary Dislocations
,”
J. Mech. Phys. Solids
,
50
(
1
), pp.
5
32
.10.1016/S0022-5096(01)00104-1
30.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
2001
, “
A Reformulation of Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
49
(
10
), pp.
2245
2271
.10.1016/S0022-5096(01)00049-7
31.
Bassani
,
J. L.
,
2001
, “
Incompatibility and a Simple Gradient Theory of Plasticity
,”
J. Mech. Phys. Solids
,
49
(
9
), pp.
1983
1996
.10.1016/S0022-5096(01)00037-0
32.
Evers
,
L. P.
,
Parks
,
D. M.
,
Brekelmans
,
W. A. M.
, and
Geers
,
M. G. D.
,
2002
, “
Crystal Plasticity Model With Enhanced Hardening by Geometrically Necessary Dislocation Accumulation
,”
J. Mech. Phys. Solids
,
50
(
11
), pp.
2403
2424
.10.1016/S0022-5096(02)00032-7
33.
Evers
,
L. P.
,
Brekelmans
,
W. A. M.
, and
Geers
,
M. G. D.
,
2004
, “
Non-Local Crystal Plasticity Model With Intrinsic SSD and GND Effects
,”
J. Mech. Phys. Solids
,
52
(
10
), pp.
2379
2401
.10.1016/j.jmps.2004.03.007
34.
Huang
,
Y.
,
Qu
,
S.
,
Hwang
,
K. C.
,
Li
,
M.
, and
Gao
,
H.
,
2004
, “
A Conventional Theory of Mechanism-Based Strain Gradient Plasticity
,”
Int. J. Plast.
,
20
(
4–5
), pp.
753
782
.10.1016/j.ijplas.2003.08.002
35.
Gudmundson
,
P.
,
2004
, “
A Unified Treatment of Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
52
(
6
), pp.
1379
1406
.10.1016/j.jmps.2003.11.002
36.
Huang
,
Y.
,
Zhang
,
F.
,
Hwang
,
K. C.
,
Nix
,
W. D.
,
Pharr
,
G. M.
, and
Feng
,
G.
,
2006
, “
A Model of Size Effects in Nano-Indentation
,”
J. Mech. Phys. Solids
,
54
(
8
), pp.
1668
1686
.10.1016/j.jmps.2006.02.002
37.
Han
,
C.-S.
,
Gao
,
H.
,
Huang
,
Y.
, and
Nix
,
W. D.
,
2005
, “
Mechanism-Based Strain Gradient Crystal Plasticity—I. Theory
,”
J. Mech. Phys. Solids
,
53
(
5
), pp.
1188
1203
.10.1016/j.jmps.2004.08.008
38.
Han
,
C.-S.
,
Gao
,
H.
,
Huang
,
Y.
, and
Nix
,
W. D.
,
2005
, “
Mechanism-Based Strain Gradient Crystal Plasticity—II. Analysis
,”
J. Mech. Phys. Solids
,
53
(
5
), pp.
1204
1222
.10.1016/j.jmps.2005.01.004
39.
Kuroda
,
M.
, and
Tvergaard
,
V.
,
2006
, “
Studies of Scale Dependent Crystal Viscoplastic Models
,”
J. Mech. Phys. Solids
,
54
(
9
), pp.
1789
1810
.10.1016/j.jmps.2006.04.002
40.
Arsenlis
,
A.
, and
Parks
,
D. M.
,
2002
, “
Modeling the Evolution of Crystallographic Dislocation Density in Crystal Plasticity
,”
J. Mech. Phys. Solids
,
50
(
9
), pp.
1979
2009
.10.1016/S0022-5096(01)00134-X
41.
Arsenlis
,
A.
,
Parks
,
D. M.
,
Becker
,
R.
, and
Bulatov
,
V. V.
,
2004
, “
On the Evolution of Crystallographic Dislocation Density in Non-Homogeneously Deforming Crystals
,”
J. Mech. Phys. Solids
,
52
(
6
), pp.
1213
1246
.10.1016/j.jmps.2003.12.007
42.
Ma
,
A.
,
Roters
,
F.
, and
Raabe
,
D.
,
2006
, “
A Dislocation Density Based Constitutive Model for Crystal Plasticity FEM Including Geometrically Necessary Dislocations
,”
Acta Mater.
,
54
(
8
), pp.
2169
2179
.10.1016/j.actamat.2006.01.005
43.
Durst
,
K.
,
Backes
,
B.
,
Franke
,
O.
, and
Göken
,
M.
,
2006
, “
Indentation Size Effect in Metallic Materials: Modeling Strength From Pop-In to Macroscopic Hardness Using Geometrically Necessary Dislocations
,”
Acta Mater.
,
54
(
9
), pp.
2547
2555
.10.1016/j.actamat.2006.01.036
44.
Kwon
,
J.
,
Brandes
,
M. C.
,
Sudharshan Phani
,
P.
,
Pilchak
,
A. P.
,
Gao
,
Y. F.
,
George
,
E. P.
,
Pharr
,
G. M.
, and
Mills
,
M. J.
,
2013
, “
Characterization of Deformation Anisotropies in an Alpha-Ti Alloy by Nanoindentation and Electron Microscopy
,”
Acta Mater.
,
61
(
13
), pp.
4743
4756
.10.1016/j.actamat.2013.05.005
45.
Sun
,
S.
,
Adams
,
B. L.
, and
King
,
W. E.
,
2000
, “
Observations of Lattice Curvature Near the Interface of a Deformed Aluminum Bicrystal
,”
Philos. Mag. A
,
80
(
1
), pp.
9
25
.10.1080/01418610008212038
46.
Wilkinson
,
A. J.
,
2001
, “
A New Method for Determining Small Misorientations From Electron Back Scatter Diffraction Patterns
,”
Scr. Mater.
,
44
(
10
), pp.
2379
2385
.10.1016/S1359-6462(01)00943-5
47.
Zaafarani
,
N.
,
Raabe
,
D.
,
Singh
,
R. N.
,
Roters
,
F.
, and
Zaefferer
,
S.
,
2006
, “
Three-Dimensional Investigation of the Texture and Microstructure Below a Nanoindent in a Cu Single Crystal Using 3D EBSD and Crystal Plasticity Finite Element Simulations
,”
Acta Mater.
,
54
(
7
), pp.
1863
1876
.10.1016/j.actamat.2005.12.014
48.
Kysar
,
J. W.
,
Gan
,
Y. X.
,
Morse
,
T. L.
,
Chen
,
X.
, and
Jones
,
M. E.
,
2007
, “
High Strain Gradient Plasticity Associated With Wedge Indentation Into Face-Centered Cubic Single Crystals: Geometrically Necessary Dislocation Densities
,”
J. Mech. Phys. Solids
,
55
(
7
), pp.
1554
1573
.10.1016/j.jmps.2006.09.009
49.
Zaefferer
,
S.
,
Wright
,
S. I.
, and
Raabe
,
D.
,
2008
, “
Three-Dimensional Orientation Microscopy in a Focused Ion Beam–Scanning Electron Microscope: A New Dimension of Microstructure Characterization
,”
Metall. Mater. Trans. A
,
39
(
2
), pp.
374
389
.10.1007/s11661-007-9418-9
50.
Demir
,
E.
,
Raabe
,
D.
,
Zaafarani
,
N.
, and
Zaefferer
,
S.
,
2009
, “
Investigation of the Indentation Size Effect Through the Measurement of the Geometrically Necessary Dislocations Beneath Small Indents of Different Depths Using EBSD Tomography
,”
Acta Mater.
,
57
(
2
), pp.
559
569
.10.1016/j.actamat.2008.09.039
51.
Dahlbert
,
C. F. O.
,
Saito
,
Y.
,
Öztop
,
M. S.
, and
Kysar
,
J. W.
,
2014
, “
Geometrically Necessary Dislocation Density Measurements Associated With Different Angles of Indentations
,”
Int. J. Plast.
,
54
, pp.
81
95
.10.1016/j.ijplas.2013.08.008
52.
Larson
,
B. C.
,
Yang
,
W.
,
Ice
,
G. E.
,
Budai
,
J. D.
, and
Tischler
,
J. Z.
,
2002
, “
Three-Dimensional X-Ray Structural Microscopy With Submicrometre Resolution
,”
Nature
,
415
(
6874
), pp.
887
890
.10.1038/415887a
53.
Larson
,
B. C.
,
Tischler
,
J. Z.
,
El-Azab
,
A.
, and
Liu
,
W.
,
2008
, “
Dislocation Density Tensor Characterization of Deformation Using 3D X-Ray Microscopy
,”
ASME J. Eng. Mater. Technol.
,
130
(
2
), p.
021024
.10.1115/1.2884336
54.
Larson
,
B. C.
, and
Levine
,
L. E.
,
2013
, “
Submicrometre-Resolution Polychromatic Three-Dimensional X-Ray Microscopy
,”
J. Appl. Crystallogr.
,
46
, pp.
153
164
.10.1107/S0021889812043737
55.
Yang
,
W.
,
Larson
,
B. C.
,
Pharr
,
G. M.
,
Ice
,
G. E.
,
Budai
,
J. D.
,
Tischler
,
J. Z.
, and
Liu
,
W.
,
2004
, “
Deformation Microstructure Under Microindents in Single-Crystal Cu Using Three-Dimensional X-Ray Structural Microscopy
,”
J. Mater. Res.
,
19
(
1
), pp.
66
72
.10.1557/jmr.2004.19.1.66
56.
Barabash
,
R. I.
,
Bei
,
H.
,
Gao
,
Y. F.
, and
Ice
,
G. E.
,
2010
, “
Indentation-Induced Localized Deformation and Elastic Strain Partitioning in Composites at Submicron Length Scale
,”
Acta Mater.
,
58
(
20
), pp.
6784
6789
.10.1016/j.actamat.2010.09.004
57.
Barabash
,
R. I.
,
Bei
,
H.
,
Gao
,
Y. F.
,
Ice
,
G. E.
, and
George
,
E. P.
,
2010
, “
3D X-Ray Microscope Investigation of Local Dislocation Densities and Elastic Strain Gradients in a NiAl–Mo Composite and Exposed Mo Micropillars as a Function of Pre-Strain
,”
J. Mater. Res.
,
25
, pp.
199
206
.10.1557/JMR.2010.0043
58.
Barabash
,
R. I.
,
Bei
,
H.
,
Gao
,
Y. F.
, and
Ice
,
G. E.
,
2011
, “
Interface Strength in NiAl–Mo Composites From 3D X-Ray Microdiffraction
,”
Scr. Mater.
,
64
(
9
), pp.
900
903
.10.1016/j.scriptamat.2011.01.028
59.
Yang
,
W.
,
Larson
,
B. C.
,
Ice
,
G. E.
,
Budai
,
J. D.
, and
Chung
,
K.-S.
,
2003
, “
Spatially Resolved Poisson Strain and Anticlastic Curvature Measurements in Si Under Large Deflection Bending
,”
Appl. Phys. Lett.
,
82
(
22
), pp.
3856
3858
.10.1063/1.1579857
60.
Needleman
,
A.
,
Asaro
,
R. J.
,
Lemonds
,
J.
, and
Peirce
,
D.
,
1985
, “
Finite Element Analysis of Crystalline Solids
,”
Comput. Methods Appl. Mech. Eng.
,
52
(
1–3
), pp.
689
708
.10.1016/0045-7825(85)90014-3
61.
Bower
,
A. F.
, and
Wininger
,
E.
,
2004
, “
A Two-Dimensional Finite Element Method for Simulating the Constitutive Response and Microstructure of Polycrystals During High Temperature Plastic Deformation
,”
J. Mech. Phys. Solids
,
52
(
6
), pp.
1289
1317
.10.1016/j.jmps.2003.11.004
62.
Bouvier
,
S.
, and
Needleman
,
A.
,
2006
, “
Effect of the Number and Orientation of Active Slip Systems on Plane Strain Single Crystal Indentation
,”
Modell. Simul. Mater. Sci. Eng.
,
14
(
7
), pp.
1105
1125
.10.1088/0965-0393/14/7/001
63.
Cermelli
,
P.
, and
Gurtin
,
M. E.
,
2001
, “
On the Characterization of Geometrically Necessary Dislocations in Finite Plasticity
,”
J. Mech. Phys. Solids
,
49
(
7
), pp.
1539
1568
.10.1016/S0022-5096(00)00084-3
64.
Gurtin
,
M. E.
, and
Anand
,
L.
,
2007
, “
A Gradient Theory for Single-Crystal Plasticity
,”
Modell. Simul. Mater. Sci. Eng.
,
15
(
1
), pp.
S263
S270
.10.1088/0965-0393/15/1/S20
65.
Kröner
,
E.
,
1981
, “
Continuum Theory of Defects
,”
Physics of Defects
,
R.
Balian
,
M.
Kleman
, and
J.
Poirier
, eds.,
North-Holland
,
Amsterdam
, pp.
282
315
.
66.
ABAQUS
,
2002
, “
abaqus User's Manual, Version 6.3
,” ABAQUS, Inc., Providence, RI.
67.
Huang
,
Y.
,
1991
, “
A User-Material Subroutine Incorporating Single Crystal Plasticity in the abaqus Finite Element Program
,” Division of Engineering and Applied Science, Harvard University, Cambridge, MA, Mechanics Report No. 179.
68.
Qu
,
S.
,
Huang
,
Y.
,
Jiang
,
H.
,
Liu
,
C.
,
Wu
,
P. D.
, and
Hwang
,
K. C.
,
2004
, “
Fracture Analysis in the Conventional Theory of Mechanism-Based Strain Gradient (CMSG) Plasticity
,”
Int. J. Fract.
,
129
(
3
), pp.
199
220
.10.1023/B:FRAC.0000047786.40200.f8
69.
Qu
,
S.
,
Huang
,
Y.
,
Pharr
,
G. M.
, and
Hwang
,
K. C.
,
2006
, “
The Indentation Size Effect in the Spherical Indentation of Iridium: A Study Via the Conventional Theory of Mechanism-Based Strain Gradient Plasticity
,”
Int. J. Plast.
,
22
(
7
), pp.
1265
1286
.10.1016/j.ijplas.2005.07.008
70.
Bower
,
A. F.
,
Fleck
,
N. A.
,
Needleman
,
A.
, and
Ogbonna
,
N.
,
1993
, “
Indentation of a Power Law Creeping Solid
,”
Proc. R. Soc. London, Ser. A
,
441
(
1911
), pp.
97
124
.10.1098/rspa.1993.0050
71.
Saito
,
Y.
, and
Kysar
,
J. W.
,
2011
, “
Wedge Indentation Into Elastic–Plastic Single Crystals, 1: Asymptotic Fields for Nearly-Flat Wedge
,”
Int. J. Plast.
,
27
(
10
), pp.
1640
1657
.10.1016/j.ijplas.2010.10.007
72.
Saito
,
Y.
,
Oztop
,
M. S.
, and
Kysar
,
J. W.
,
2012
, “
Wedge Indentation Into Elastic–Plastic Single Crystals. 2: Simulations for Face-Centered Cubic Crystals
,”
Int. J. Plast.
,
28
(
1
), pp.
70
87
.10.1016/j.ijplas.2011.05.013
73.
Li
,
W. D.
,
Bei
,
H.
,
Qu
,
J.
, and
Gao
,
Y. F.
,
2013
, “
Effects of Machine Stiffness on the Loading–Displacement Curve During Spherical Nano-Indentation
,”
J. Mater. Res.
,
28
(
14
), pp.
1903
1911
.10.1557/jmr.2013.164
74.
Hoffmann
,
T.
,
Kalisch
,
J.
,
Bertram
,
A.
,
Shim
,
S.
,
Tischler
,
J. Z.
,
Bei
,
H.
, and
Larson
,
B. C.
,
2010
, “
Experimental Identification and Validation of Models in Micro and Macro Plasticity
,”
Tech. Mech.
,
30
(
1–3
), pp.
136
145
.
75.
Larson
,
B. C.
,
EL-Azab
,
A.
,
Yang
,
W.
,
Tischler
,
J. Z.
,
Liu
,
W.
, and
Ice
,
G. E.
,
2007
, “
Experimental Characterization of the Mesoscale Dislocation Density Tensor
,”
Philos. Mag. A
,
87
(
8–9
), pp.
1327
1347
.10.1080/14786430600943930
76.
Kreuzer
,
H. G. M.
, and
Pippan
,
R.
,
2004
, “
Discrete Dislocation Simulation of Nanoindentation
,”
Comput. Mech.
,
33
(
4
), pp.
292
298
.10.1007/s00466-003-0531-3
77.
Kreuzer
,
H. G. M.
, and
Pippan
,
R.
,
2005
, “
Discrete Dislocation Simulation of Nanoindentation: The Effect of Statistically Distributed Dislocations
,”
Mater. Sci. Eng.: A
,
400–401
, pp.
460
462
.10.1016/j.msea.2005.01.065
You do not currently have access to this content.