The mechanisms by which different morphologies of preferentially foam filled corrugated panels deform under planar blast loading, transmit shock, and absorb energy are investigated experimentally and numerically for the purpose of mitigating back-face deflection (BFD). Six foam filling configurations were fabricated and subjected to shock wave loading generated by a shock tube. Shock tube experimental results obtained from high-speed photography were used to validate the numerical models. The validated numerical model was further used to analyze 24 different core configurations. The experimental and numerical results show that soft/hard arrangements (front to back) are the most effective for blast resistivity as determined by the smallest BFDs. The number of foam filled layers in each specimen affected the amount of front-face deflections (FFDs), but did relatively little to alter BFDs, and results do not support alternating foam filling layers as a valid method to attenuate shock impact.

References

References
1.
Dharmasena
,
K. P.
,
Wadley
,
H. N. G.
,
Williams
,
K.
,
Xue
,
Z.
, and
Hutchinson
,
J. W.
,
2011
, “
Response of Metallic Pyramidal Lattice Core Sandwich Panels to High Intensity Impulsive Loading in Air
,”
Int. J. Impact Eng.
,
38
(
5
), pp.
275
289
.10.1016/j.ijimpeng.2010.10.002
2.
Fleck
,
N. A.
, and
Deshpande
,
V. S.
,
2004
, “
The Resistance of Clamped Sandwich Beams to Shock Loading
,”
ASME J. Appl. Mech.
,
71
(
3
), pp.
386
401
.10.1115/1.1629109
3.
Li
,
R.
,
Kardomateas
,
G. A.
, and
Simitses
,
G. J.
,
2008
, “
Nonlinear Response of a Shallow Sandwich Shell With Compressible Core to Blast Loading
,”
ASME J. Appl. Mech.
,
75
(
6
), p.
061023
.10.1115/1.2937154
4.
Theobald
,
M. D.
,
Langdon
,
G. S.
,
Nurick
,
G. N.
,
Pillay
,
S.
,
Heyns
,
A.
, and
Merrett
,
R. P.
,
2010
, “
Large Inelastic Response of Unbonded Metallic Foam and Honeycomb Core Sandwich Panels to Blast Loading
,”
Compos. Struct.
,
92
(
10
), pp.
2465
2475
.10.1016/j.compstruct.2010.03.002
5.
Langdon
,
G. S.
,
von Klemperer
,
C. J.
,
Rowland
,
B. K.
, and
Nurick
,
G. N.
,
2012
, “
The Response of Sandwich Structures With Composite Face Sheets and Polymer Foam Cores to Air-Blast Loading: Preliminary Experiments
,”
Eng. Struct.
,
36
, pp.
104
112
.10.1016/j.engstruct.2011.11.023
6.
Ferri
,
E.
,
Deshpande
,
V. S.
, and
Evans
,
A. G.
,
2010
, “
The Dynamic Strength of a Representative Double Layer Prismatic Core: A Combined Experimental, Numerical, and Analytical Assessment
,”
ASME J. Appl. Mech.
,
77
(
6
), p.
061011
.10.1115/1.4000905
7.
Qiu
,
X.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2004
, “
Dynamic Response of a Clamped Circular Sandwich Plate Subject to Shock Loading
,”
ASME J. Appl. Mech.
,
71
(
5
), pp.
637
645
.10.1115/1.1778416
8.
Cui
,
X.
,
Zhao
,
L.
,
Wang
,
Z.
,
Zhao
,
H.
, and
Fang
,
D.
,
2012
, “
Dynamic Response of Metallic Lattice Sandwich Structures to Impulsive Loading
,”
Int. J. Impact Eng.
,
43
, pp.
1
5
.10.1016/j.ijimpeng.2011.11.004
9.
Liang
,
Y.
,
Spuskanyuk
,
A. V.
,
Flores
,
S. E.
,
Hayhurst
,
D. R.
,
Hutchinson
,
J. W.
,
McMeeking
,
R. M.
, and
Evans
,
A. G.
,
2007
, “
The Response of Metallic Sandwich Panels to Water Blast
,”
ASME J. Appl. Mech.
,
74
(
1
), pp.
81
99
.10.1115/1.2178837
10.
Wei
,
Z.
,
Deshpande
,
V. S.
,
Evans
,
A. G.
,
Dharmasena
,
K. P.
,
Queheillalt
,
D. T.
,
Wadley
,
H. N. G.
,
Murty
,
Y. V.
,
Elzey
,
R. K.
,
Dudt
,
P.
,
Chen
,
Y.
,
Knight
,
D.
, and
Kiddy
,
K.
,
2008
, “
The Resistance of Metallic Plates to Localized Impulse
,”
J. Mech. Phys. Solids
,
56
(
5
), pp.
2074
2091
.10.1016/j.jmps.2007.10.010
11.
Avachat
,
S.
, and
Zhou
,
M.
,
2012
, “
Effect of Facesheet Thickness on Dynamic Response of Composite Sandwich Plates to Underwater Impulsive Loading
,”
Exp. Mech.
,
52
(
1
), pp.
83
93
.10.1007/s11340-011-9538-4
12.
Schimizze
,
B.
,
Son
,
S. F.
,
Goel
,
R.
,
Vechart
,
A. P.
, and
Young
,
L.
,
2013
, “
An Experimental and Numerical Study of Blast Induced Shock Wave Mitigation in Sandwich Structures
,”
Appl. Acoust.
,
74
(
1
), pp.
741
1749
.10.1016/j.apacoust.2012.05.011
13.
Zhuang
,
S.
,
Ravichandran
,
G.
, and
Grady
,
D. E.
,
2003
, “
An Experimental Investigation of Shock Wave Propagation in Periodically Layered Composites
,”
J. Mech. Phys. Solids
,
51
(
2
), pp.
245
265
.10.1016/S0022-5096(02)00100-X
14.
Wakabayashi
,
T. H.
,
Matsumura
,
T.
, and
Nakayama
,
Y.
,
2007
, “
Reduction of Explosion Damage Using Sand or Water Layer
,”
AIP Conf. Proc.
,
955
(1), pp.
1289
1292
.10.1063/1.2832958
15.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids: Structure and Properties
,
2nd ed.
,
Cambridge University Press
,
Cambridge, UK
.
16.
Wu
,
C. L.
,
Weeks
,
C. A.
, and
Sun
,
C. T.
,
1995
, “
Improving Honeycomb-Core Sandwich Structures for Impact Resistance
,”
J. Adv. Mater.
,
26
(
4
), pp.
41
47
.
17.
Resewski
,
C.
, and
Buchgraber
,
W.
,
2003
, “
Properties of New Polyimide Foams and Polyimide Foam Filled Honeycomb Composites
,”
Materialwiss. Werkstofftech.
,
34
(
4
), pp.
365
369
.10.1002/mawe.200390076
18.
Vaidya
,
U. K.
,
Ulven
,
C.
,
Pillay
,
S.
, and
Ricks
,
H.
,
2003
, “
Impact Damage of Partially Foam-Filled Co-Injected Honeycomb Core Sandwich Composites
,”
J. Compos. Mater.
,
37
(
7
), pp.
611
626
.10.1177/002199803029724
19.
Vaidya
,
U. K.
,
Kamath
,
M. V.
,
Mahfuz
,
H.
, and
Jeelani
,
S.
,
1998
, “
Low Velocity Impact Response of Resin Infusion Molded Foam Filled Honeycomb Sandwich Composites
,”
J. Reinf. Plast. Compos.
,
17
(
9
), pp.
819
849
.10.1177/073168449801700904
20.
Yazici
,
M.
,
Wright
,
J.
,
Bertin
,
D.
, and
Shukla
,
A.
,
2013
, “
Experimental and Numerical Study of Foam Filled Corrugated Core Steel Sandwich Structures Subjected to Blast Loading
,”
Compos. Struct.
,
110
, pp.
98
109
.10.1016/j.compstruct.2013.11.016
21.
Vaziri
,
A.
, and
Xue
,
Z.
,
2007
, “
Mechanical Behavior and Constitutive Modeling of Metal Cores
,”
J. Mech. Mater. Struct.
,
2
(
9
), pp.
1743
1760
.10.2140/jomms.2007.2.1743
22.
Gardner
,
N.
,
Wang
,
E.
, and
Shukla
,
A.
,
2012
, “
Performance of Functionally Graded Sandwich Composite Beams Under Shock Wave Loading
,”
Compos. Struct.
,
94
(
5
), pp.
1755
1770
.10.1016/j.compstruct.2011.12.006
23.
Wang
,
E.
,
Gardner
,
N.
, and
Shukla
,
A.
,
2009
, “
Blast Resistance of Sandwich Composites With Stepwise Graded Cores
,”
Int. J. Solids Struct.
,
46
(
18–19
), pp.
3492
3502
.10.1016/j.ijsolstr.2009.06.004
24.
Zhang
,
L.
,
Hebert
,
R.
,
Wright
,
J. T.
,
Shukla
,
A.
,
Kim
,
J.-H.
,
2014
, “
Dynamic Response of Corrugated Steel Plates With Graded Cores
,”
Int. J. Impact Eng.
,
65
, pp.
185
194
.10.1016/j.ijimpeng.2013.11.011
25.
Wright
,
J.
,
Hebert
,
R.
,
Maddala
,
D.
, and
Shukla
,
A.
,
2014
, “
Experimental Study on the Response of Graded Corrugated Steel Armor to Shock Loading
,”
Meccanica
,
50
(
2
), pp.
479
492
.10.1007/s11012-014-9914-0
26.
Abotula
,
S.
,
Heeder
,
N.
,
Chona
,
R.
, and
Shukla
,
A.
,
2013
, “
Dynamic Thermo-Mechanical Response of Hastelloy X to Shock Wave Loading
,”
Exp. Mech.
,
54
(
2
), pp.
279
291
.10.1007/s11340-013-9796-4
27.
Karagiozova
,
D.
,
Nurick
,
G. N.
, and
Langdon
,
G. S.
,
2009
, “
Behaviour of Sandwich Panels Subject to Intense Air Blasts—Part 2: Numerical Simulation
,”
Compos. Struct.
,
91
(
4
), pp.
442
450
.10.1016/j.compstruct.2009.04.010
28.
Kumar
,
P.
,
LeBlanc
,
J.
,
Stargel
,
D.
, and
Shukla
,
A.
,
2012
, “
Effect of Plate Curvature on Blast Response of Aluminum Panels
,”
Int. J. Impact Eng.
,
46
, pp.
74
85
.10.1016/j.ijimpeng.2012.02.004
29.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
7th International Symposium on Ballistics
, The Hague, The Netherlands, Apr. 19–21, pp.
541
547
.
30.
Schever
,
L.
,
2007
, “
Optional Strain-Rate Forms for the Johnson Cook Constitutive Model and the Role of the Parameter Epsilon_0
,”
6th European LS-DYNA Users’ Conference
, Frankenthal, Germany, Oct. 11–22.
31.
Gardner
,
N.
,
Wang
,
E.
,
Kumar
,
P.
, and
Shukla
,
A.
,
2012
, “
Blast Mitigation in a Sandwich Composite Using Graded Core and Polyurea Interlayer
,”
Exp. Mech.
,
52
(
2
), pp.
119
133
.10.1007/s11340-011-9517-9
32.
Subramaniam
,
K. V.
,
Nian
,
W.
, and
Andreopoulos
,
Y.
,
2009
, “
Blast Response Simulation of an Elastic Structure: Evaluation of the Fluid-Structure Interaction Effect
,”
Int. J. Impact Eng.
,
36
(
7
), pp.
965
974
.10.1016/j.ijimpeng.2009.01.001
33.
Pearson
,
K.
,
1895
, “
Notes on Regression and Inheritance in the Case of Two Parents
,”
Proc. R. Soc. London
,
58
(347–352), pp.
240
242
.10.1098/rspl.1895.0041
34.
Russell
,
D. M.
,
1997
, “
Error Measure for Comparing Transient Data, Part I: Development of a Comprehensive Error Measure, Part II: Error Measure Case Study
,”
68th Shock and Vibration Symposium
, Hunt Valley, MD, Nov. 3–6, pp. 175–198.
35.
Russell
,
D. M.
,
1998
, “
DDG53 Shock Trial Simulation Acceptance Criteria
,”
69th Shock and Vibration Symposium
, St. Paul, MN, Oct. 12–19.
36.
Xue
,
Z. Y.
, and
Hutchinson
,
J. W.
,
2004
, “
A Comparative Study of Impulse-Resistant Metal Sandwich Plates
,”
Int. J. Impact Eng.
,
30
(
10
), pp.
1283
1305
.10.1016/j.ijimpeng.2003.08.007
37.
Xue
,
Z.
, and
Hutchinson
,
J. W.
,
2003
, “
Preliminary Assessment of Sandwich Plates Subject to Blast Loads
,”
Int. J. Mech. Sci.
,
45
(
4
), pp.
687
705
.10.1016/S0020-7403(03)00108-5
You do not currently have access to this content.