The mechanics of an elastic helical coil are well known; however, the replacement of the elastic material with a viscoelastic material introduces a time dependency that requires a re-examination of the mechanics. A new theory has been developed that allows the prediction of the time to instability as a function of load, viscosity, and relaxation time, and is applied to an exemplar polyvinyl chloride (PVC) ring. The PVC ring shows that twist buckling dominates the instability, and the maximum critical time is approximately 90% of the relaxation period of the material achieved at a viscosity of 50%. Some viscosity is desirable to utilize the energy dissipation ability of a viscoelastic material. The new theory has a practical application in the field of nuclear reactor component design because the metals within the reactor are exposed to elevated temperatures thus exhibiting viscoelastic behavior. The Canadian Deuterium (CANDU®) reactor uses garter springs as spacers within the calandria of the reactor, and these spacers have been observed to move. A better understanding of the mechanics of the spacers may lead to improved spacer design.

References

References
1.
Yoo
,
H.-S.
, and
Chung
,
J.-G.
,
1998
, “
A Review of Pressure Tube Failure Accident in the CANDU Reactor and Methods for Improving Reactor Performance
,”
J. Korean Nucl. Soc.
,
30
, pp.
262
272
.
2.
Field
,
G.
,
Dunn
,
J.
, and
Cheadle
,
B.
,
1985
, “
Analysis of the Pressure Tube Failure at Pickering NGS a Unit 2
,”
Can. Metall. Q.
,
24
(
3
), pp.
181
188
.10.1179/cmq.1985.24.3.181
3.
Griffiths
,
M.
,
2013
, “
The Effect of Irradiation on Ni-Containing Components in CANDU Reactor Cores: A Review
,”
AECL Nucl. Rev.
,
2
(
1
), pp.
1
16
.10.12943/ANR.2013.00001
4.
Lin
,
Y.
, and
Pisano
,
A.
,
1987
, “
General Dynamic Equations of Helical Springs With Static Solution and Experimental Verification
,”
ASME J. Appl. Mech.
,
54
(
4
), pp.
910
917
.10.1115/1.3173138
5.
Ross
,
A.
,
1946
, “
The Effects of Creep on Instability and Indeterminacy Investigated by Plastic Models
,”
Struct. Eng.
,
24
(
8
), pp.
413
428
.
6.
Freudenthal
,
A.
,
1950
,
The Inelastic Behavior of Engineering Materials and Structures
,
Wiley
,
New York
.
7.
Hult
,
J.
,
1955
, “
Critical Time in Creep Buckling
,”
ASME J. Appl. Mech.
,
22
(
3
), pp.
432
.
8.
Distefano
,
J.
,
1965
, “
Creep Buckling of Slender Columns
,”
J. Struct. Div.
,
91
(
3
), pp.
127
150
.
9.
Koltunov
,
M.
,
Stepanenkova
,
L.
,
Troyanovskii
,
I.
, and
Shevelev
,
N.
,
1978
, “
A Method of Solving Integral Equations in Problems of the Strength and Stability of Viscoelastic Structures
,”
Mekh. Polim.
,
3
, pp.
474
480
.
10.
Vinogradov
,
A.
,
1987
, “
Buckling of Viscoelastic Beam Columns
,”
AIAA J.
,
25
(
3
), pp.
479
483
.10.2514/3.9648
11.
Minahen
,
T.
, and
Knauss
,
W.
,
1993
, “
Creep Buckling of Viscoelastic Structures
,”
Int. J. Solids Struct.
,
30
(
8
), pp.
1075
1092
.10.1016/0020-7683(93)90004-Q
12.
Wah
,
T.
,
1970
, “
Dynamic Buckling of Thin Circular Rings
,”
Int. J. Mech. Sci.
,
12
(
2
), pp.
143
155
.10.1016/0020-7403(70)90014-7
13.
Seide
,
P.
,
1973
, “
Postbuckling Behavior of Circular Rings With Two or Four Concentrated Loads
,”
Int. J. Non-Linear Mech.
,
8
(
3
), pp.
169
178
.10.1016/0020-7462(73)90041-3
14.
Seide
,
P.
, and
Albano
,
E.
,
1973
, “
Bifurcation of Circular Rings Under Normal Concentrated Loads
,”
ASME J. Appl. Mech.
,
40
(
1
), pp.
233
238
.10.1115/1.3422932
15.
Doerffer
,
S.
,
Alizadeh
,
A.
, and
Hopwood
,
J.
,
2006
, “Powering the Future With Advanced CANDU Reactors—ACR,” online, June.
16.
Albano
,
E.
, and
Seide
,
P.
,
1973
, “
Bifurcation of Rings Under Concentrated Centrally Directed Loads
,”
ASME J. Appl. Mech.
,
40
(
2
), pp.
553
558
.10.1115/1.3423022
17.
Michell
,
J.
,
1890
, “
On the Stability of a Bent and Twisted Wire
,”
Messenger Math.
,
19
, pp.
181
184
.
18.
Goriely
,
A.
,
2006
, “
Twisted Elastic Rings and the Rediscoveries of Michell's Instability
,”
J. Elasticity
,
84
(
3
), pp.
281
299
.10.1007/s10659-006-9055-3
19.
Christensen
,
R. M.
,
1982
,
Theory of Viscoelasticity—An Introduction
,
2nd ed.
,
Academic
,
New York
.
20.
Drozdov
,
A.
,
1998
,
Viscoelastic Structures: Mechanics of Growth and Aging
,
Academic
,
San Diego, CA
.
21.
Lakes
,
R.
,
1999
,
Viscoelastic Solids
(Mechanical Engineering Series),
CRC Press
,
Boca Raton, FL
.
22.
Findley
,
W.
,
Lai
,
J.
, and
Onaran
,
K.
,
1976
,
Creep and Relaxation of Nonlinear Viscoelastic Materials With an Introduction to Linear Viscoelasticity
,
Dover
,
New York
.
23.
Graham
,
G.
, and
Sabin
,
G.
,
1973
, “
The Correspondence Principle of Linear Viscoelasticity for Problems That Involve Time-Dependent Regions
,”
Int. J. Eng. Sci.
,
11
(
1
), pp.
123
140
.10.1016/0020-7225(73)90074-8
24.
Merrett
,
C.
, and
Hilton
,
H.
,
2010
, “
Elastic and Viscoelastic Panel Flutter in Incompressible, Subsonic and Compressible Flows
,”
J. Aeroelasticity Struct. Dyn.
,
2
(
1
), pp.
53
80
.10.3293/asdj.2010.8
25.
Drozdov
,
A.
, and
Kolmanovskii
,
V.
,
1994
,
Stability in Viscoelasticity
,
North-Holland, New York
.
26.
Drozdov
,
A.
,
1996
, “
Lyapunov Stability of a Class of Operator Integro-Differential Equations With Applications to Viscoelasticity
,”
Math. Methods Appl. Sci.
,
19
(
5
), pp.
341
361
.10.1002/(SICI)1099-1476(19960325)19:5<341::AID-MMA775>3.0.CO;2-M
27.
Drozdov
,
A.
, and
Kalamkarov
,
A.
,
1997
, “
Explicit Stability Conditions for Viscoelastic Structural Members
,”
J. Vib. Control
,
3
(
2
), pp.
161
182
.10.1177/107754639700300202
28.
Drozdov
,
A.
,
1997
, “
Explicit Stability Conditions for Integro-Differential Equations With Operator Coefficients
,”
Q. J. Mech. Appl. Math.
,
50
(
2
), pp.
261
277
.10.1093/qjmam/50.2.261
29.
Abramowitz
,
M.
, and
Stegun
,
I. A.
, eds.,
1972
,
Handbook of Mathematical Functions
,
Dover, New York
.
You do not currently have access to this content.