Systems whose specifications change abruptly and statistically, referred to as Markovian-jump systems, are considered in this paper. An approximate method is presented to assess the stationary response of multidegree, nonlinear, Markovian-jump, quasi-nonintegrable Hamiltonian systems subjected to stochastic excitation. Using stochastic averaging, the quasi-nonintegrable Hamiltonian equations are first reduced to a one-dimensional Itô equation governing the energy envelope. The associated Fokker–Planck–Kolmogorov equation is then set up, from which approximate stationary probabilities of the original system are obtained for different jump rules. The validity of this technique is demonstrated by using a nonlinear two-degree oscillator that is stochastically driven and capable of Markovian jumps.

References

References
1.
Krasovskii
,
N. N.
, and
Lidskii
,
E. A.
,
1961
, “
Analytical Design of Controllers in Systems With Random Attributes I
,”
Autom. Remote Control
,
22
(
9
), pp.
1021
1025
.
2.
Krasovskii
,
N. N.
, and
Lidskii
,
E. A.
,
1961
, “
Analytical Design of Controllers in Systems With Random Attributes II
,”
Autom. Remote Control
,
22
(
10
), pp.
1141
1146
.
3.
Krasovskii
,
N. N.
, and
Lidskii
,
E. A.
,
1961
, “
Analytical Design of Controllers in Systems With Random Attributes III
,”
Autom. Remote Control
,
22
(
11
), pp.
1289
1294
.
4.
Mariton
,
M.
,
1988
, “
Almost Sure and Moment Stability of Jump Linear Systems
,”
Syst. Control Lett.
,
11
(
5
), pp.
393
397
.10.1016/0167-6911(88)90098-9
5.
Kushner
,
H.
,
1967
,
Stochastic Stability and Control
,
Academic Press
,
New York
.
6.
Luo
,
J. W.
,
2006
, “
Comparison Principle and Stability of Itô Stochastic Differential Delay Equations With Poisson Jump and Markovian Switching
,”
Nonlinear Anal.
,
64
(
2
), pp.
253
262
.10.1016/j.na.2005.06.048
7.
Boukas
,
E. K.
, and
Liu
,
Z. K.
,
2001
, “
Robust Stability and Stabilizability of Markov Jump Linear Uncertain Systems With Mode Dependent Time Delays
,”
J. Optim. Theory Appl.
,
109
(
3
), pp.
587
600
.10.1023/A:1017515721760
8.
Boukas
,
E. K.
, and
Liu
,
Z. K.
,
2002
,
Deterministic and Stochastic Systems With Time-Delay
,
Birkhauser
,
Boston, MA
.
9.
de Farias
,
D. P.
,
Geromel
,
J. C.
,
do Val
,
J. B. R.
, and
Costa
,
O. L. V.
,
2000
, “
Output Feedback Control of Markov Jump Linear System in Continuous-Time
,”
IEEE Trans. Autom. Control
,
45
(
5
), pp.
944
949
.10.1109/9.855557
10.
de Souza
,
C. E.
, and
Fragoso
,
M. D.
,
1993
, “
H∞ Control for Linear Systems With Markovian Jumping Parameters
,”
Control Theory Adv. Technol.
,
9
, pp.
457
466
.
11.
Kats
, I
. Y.
, and
Martynyuk
,
A. A.
,
2002
,
Stability and Stabilization on Nonlinear Systems With Random Structure
,
Taylor and Francis
,
London
.
12.
Sworder
,
D.
,
1969
, “
Feedback Control of a Class of Linear Systems With Jump Parameters
,”
IEEE Trans. Autom. Control
,
14
(
1
), pp.
9
14
.10.1109/TAC.1969.1099088
13.
Ghosh
,
M. K.
,
Arapostathis
,
A.
, and
Marcus
,
S. L.
,
1997
, “
Ergodic Control of Switching Diffusions
,”
SIAM J. Control Optim.
,
35
(
6
), pp.
152
198
.
14.
Fragoso
,
M. D.
, and
Hemerly
,
E. M.
,
1991
, “
Optimal Control for a Class of Noisy Linear Systems With Markovian Jumping Parameters and Quadratic Cost
,”
Int. J. Syst. Sci.
,
22
(
12
), pp.
2553
2561
.10.1080/00207729108910813
15.
Ji
,
Y. D.
, and
Chizeck
,
H. J.
,
1992
, “
Jump Linear Quadratic Gaussian Control in Continuous Time
,”
IEEE Trans. Autom. Control
,
37
(
12
), pp.
1884
1892
.10.1109/9.182475
16.
Natache
,
S. D. A.
, and
Vilma
,
A. O.
,
2004
, “
State Feedback Fuzzy-Model-Based Control for Markovian Jump Nonlinear Systems
,”
SBA Controle Automacao
,
15
(
3
), pp.
279
290
.
17.
Zhu
,
W. Q.
,
2006
, “
Nonlinear Stochastic Dynamics and Control in Hamiltonian Formulation
,”
ASME Appl. Mech. Rev.
,
59
(
4
), pp.
230
248
.10.1115/1.2193137
18.
Zhu
,
W. Q.
, and
Yang
,
Y. Q.
,
1997
, “
Stochastic Averaging of Quasi-Nonintegrable Hamiltonian Systems
,”
ASME J. Appl. Mech.
,
64
(
1
), pp.
157
164
.10.1115/1.2787267
19.
Huan
,
R. H.
,
Wu
,
Y. J.
, and
Zhu
,
W. Q.
,
2009
, “
Stochastic Optimal Bounded Control of MDOF Quasi-Nonintegrable Hamiltonian Systems With Actuator Saturation
,”
Arch. Appl. Mech.
,
79
(2), pp.
157
168
.10.1007/s00419-008-0218-5
20.
Wonham
,
W. M.
,
1970
,
Random Differential Equations in Control Theory
,
Academic Press
,
New York
.
21.
Tabor
,
M.
,
1989
,
Chaos and Integrability in Nonlinear Dynamics
,
Wiley
,
New York
.
22.
Siegel
,
C. L.
, and
Moser
,
J. K.
,
1971
,
Lecture on Celestial Mechanics
,
Springer-Verlag
,
New York
.
23.
Itô
,
K.
,
1951
, “
On Stochastic Differential Equations
,”
Mem. Am. Math. Soc.
,
4
, pp.
289
302
.
24.
Khasminskii
,
R. Z.
,
1968
, “
On the Averaging Principle for Itô Stochastic Differential Equations
,”
Kibernetka
,
3
, pp.
260
279
.
25.
Fang
,
Y. W.
,
Wu
,
Y. L.
, and
Wang
,
H. Q.
,
2012
,
Optimal Control Theory of Stochastic Jump System
,
National Defense Industry Press
,
Beijing
.
26.
Wu
,
S. T.
,
2007
,
The Theory of Stochastic Jump System and Its Application
,
Science Press
,
Beijing
.
You do not currently have access to this content.