Metals reinforced with a high volume fraction of hard particles, e.g., cermets, have properties that are more akin to those of granular media than conventional composites. Here, the mechanical properties and deformation mechanisms of this class of materials are investigated through the fabrication and testing of idealized cermets, comprising steel spheres in a Sn/Pb solder matrix. These materials have a similar contrast in the properties of constituent phases compared to commercial cermets; however, the simpler microstructure allows an easier interpretation of their properties. A combination of X-ray tomography and multiaxial strain measurements revealed that deformation at large strains occurs by the development of shear bands similar to granular media, with the material dilating under hydrostatic pressure within these shear bands. Predictions of finite element models with a random arrangement of inclusions were in excellent agreement with the experimental results of idealized cermets. These calculations showed that at large inclusion volume fractions, composites with a random arrangement of inclusions are significantly stronger compared to their periodic counterparts, due to the development of a network of force chains through the percolated particles.

References

References
1.
ASTM Committee C-21,
1955
, “
Report of Task Group B on Cermets
,” American Society for Testing and Materials, Philadelphia, PA.
2.
Tinklepaugh
,
J. R.
, and
Crandall
,
W. B.
,
1960
,
Cermets
,
Reinhold Publishing Company
,
New York
.
3.
Fang
,
Z. Z.
,
2005
, “
Correlation of Transverse Rupture Strength of WC-Co With Hardness
,”
Int. J. Refract. Met. Hard Mater.
,
23
(
2
), pp.
119
127
.10.1016/j.ijrmhm.2004.11.005
4.
Getting
,
I. C.
,
Cheng
,
G.
, and
Brown
,
J. A.
,
1993
, “
The Strength and Rheology of Commercial Tungsten Carbide Cermets Used in High-Pressure Apparatus
,”
Pure Appl. Geophys.
,
141
(
2–4
), pp.
545
577
.10.1007/BF00998345
5.
Bolelli
,
G.
,
Cannillo
,
V.
,
Lusvarghi
,
L.
,
Rosa
,
R.
,
Valarezo
,
A.
,
Choi
,
W. B.
,
Dey
,
R.
,
Weyant
,
C.
, and
Sampath
,
S.
,
2012
, “
Functionally Graded WC-Co/NiAl HVOF Coatings for Damage Tolerance, Wear and Corrosion Protection
,”
Surf. Coat. Technol.
,
206
(
8–9
), p.
2585
.10.1016/j.surfcoat.2011.11.018
6.
Compton
,
B. G.
, and
Zok
,
F. W.
,
2013
, “
Impact Resistance of TiC-Based Cermets
,”
Int. J. Impact Eng.
,
62
, pp.
75
84
.10.1016/j.ijimpeng.2013.06.008
7.
Schwarzkopf
,
P.
, and
Keiffer
,
R.
,
1960
,
Cemented Carbides
,
MacMillan
,
New York
.
8.
Brookes
,
K. J. A.
,
1996
,
World Directory and Handbook of Hardmetals and Hard Materials
,
6th ed.
, International Carbide Data, East Barnet, UK.
9.
Culha
,
O.
,
Toparli
,
M.
,
Celik
,
E.
,
Aksoy
,
T.
, and
Soykan
,
H. S.
,
2009
, “
Indentation Size Effect on Mechanical Properties of HVOF Sprayed WC Based Cermet Coatings for a Roller Cylinder
,”
Surf. Coat. Technol.
,
203
(
14
), pp.
2052
2057
.10.1016/j.surfcoat.2009.02.005
10.
Klüsner
,
T.
,
Marsoner
,
S.
,
Ebner
,
R.
,
Pippan
,
R.
,
Glätzle
,
J.
, and
Püschel
,
A.
,
2010
, “
Effect of Microstructure on Fatigue Properties of WC-Co Hard Metals
,”
Procedia Eng.
,
2
(
1
), pp.
2001
2010
.10.1016/j.proeng.2010.03.215
11.
Luyckx
,
S.
,
2008
, “
The Hardness of Tungsten Carbide-Cobalt Hardmetal
,”
Handbook of Ceramic Hard Materials
,
R.
Riedel
, ed.,
Wiley
,
Weinheim
, Germany, pp.
946
964
.
12.
Ravichandran
,
K. S.
,
1994
, “
A Simple Model of Deformation Behaviour of Two Phase Composites
,”
Acta Metall. Mater.
,
42
(4), pp.
1113
1123
.10.1016/0956-7151(94)90128-7
13.
Arsenault
,
R. J.
, and
Taya
,
M.
,
1987
, “
Thermal Residual Stress in Metal Matrix Composite
,”
Acta Metall.
,
35
(3), pp.
651
659
.10.1016/0001-6160(87)90188-X
14.
Christman
,
T.
,
Needleman
,
A.
, and
Suresh
,
S.
,
1989
, “
An Experimental and Numerical Study of Deformation in Metal Ceramic Composites
,”
Acta Metall.
,
37
(
11
), pp.
3029
3050
.10.1016/0001-6160(89)90339-8
15.
Bao
,
G.
,
Hutchinson
,
J. W.
, and
McMeeking
,
R. M.
,
1990
, “
Particle Reinforcement of Ductile Matrices Against Plastic Flow and Creep
,”
Acta Metall. Mater.
,
39
(
8
), pp.
1871
1882
.10.1016/0956-7151(91)90156-U
16.
Taya
,
M.
,
Lulay
,
K. E.
, and
Lloyd
,
D. J.
,
1991
, “
Strengthening of a Particulate Metal Matrix Composite by Quenching
,”
Acta Metall. Mater.
,
39
(
1
), pp.
73
87
.10.1016/0956-7151(91)90329-Y
17.
Shi
,
N.
,
Bourke
,
M. A. M.
,
Roberts
,
J. A.
, and
Alisson
,
J. E.
,
1997
, “
Phase-Stress Partition During Uniaxial Tensile Loading of a TiC Particulate-Reinforced Al Composite
,”
Metall. Mater. Trans. A
,
28
(
12
), pp.
2741
2753
.10.1007/s11661-997-0031-8
18.
Starink
,
M. J.
, and
Syngellakis
,
S.
,
1999
, “
Shear Lag Models for Discontinuous Composites: Fibre End Stresses and Weak Interface Layers
,”
Mater. Sci. Eng. A
,
270
(
2
), pp.
270
277
.10.1016/S0921-5093(99)00277-4
19.
Arsenault
,
R. J.
, and
Shi
,
N.
,
1986
, “
Dislocation Generation due to Differences in Thermal Expansion
,”
Mater. Sci. Eng.
,
81
, pp.
175
187
.10.1016/0025-5416(86)90261-2
20.
Humphreys
,
F. J.
,
1988
, “
Deformation and Annealing Mechanisms in Discontinuously Reinforced Metal-Matrix Composites
,”
9th Risø International Symposium on Metallurgy and Materials Science
, Risø National Laboratory, Roskilde, Denmark, Sept. 5–9, pp. 51–74.
21.
Derby
,
B.
, and
Walker
,
J. R.
,
1988
, “
The role of Enhanced Matrix Dislocation Density in Strengthening Metal Matrix Composites
,”
Scr. Metall.
,
22
(
4
), pp.
529
532
.10.1016/0036-9748(88)90019-1
22.
Kamat
,
S. V.
,
Rollett
,
A. D.
, and
Hirth
,
J. P.
,
1991
, “
Plastic Deformation in A1-Alloy Matrix-Alumina Particulate Composites
,”
Scr. Metall. Mater.
,
25
, pp.
27
32
.10.1016/0956-716X(91)90348-5
23.
Gustafson
,
T. W.
,
Panda
,
P. C.
,
Song
,
G.
, and
Raj
,
R.
,
1997
, “
Influence of Microstructural Scale on Plastic Flow Behaviour of Metal Matrix Composites
,”
Acta Mater.
,
45
(
4
), pp.
1633
1643
.10.1016/S1359-6454(96)00277-7
24.
Lee
,
J.
,
Kim
,
N. J.
,
Jung
,
J. Y.
,
Lee
,
E. S.
, and
Ahn
,
S.
,
1998
, “
The Influence of Reinforced Particle Fracture on Strengthening of Spray Formed Cu-TiB2 Composite
,”
Scr. Mater.
,
39
(
8
), pp.
1063
1069
.10.1016/S1359-6462(98)00246-2
25.
Hershey
,
A. V.
,
1954
, “
The Plasticity of an Isotropic Aggregate of Anisotropic Face-Centered Cubic Crystals
,”
ASME J. Appl. Mech.
,
21
(
3
), pp.
241
249
.
26.
Budiansky
,
B.
,
1965
, “
On Elastic Moduli of Some Heterogeneous Materials
,”
J. Mech. Phys. Solids
,
13
(
4
), pp.
223
227
.10.1016/0022-5096(65)90011-6
27.
Hill
,
R.
,
1965
, “
A Self-Consistent Mechanics of Composite Materials
,”
J. Mech. Phys. Solids
,
13
(
4
), pp.
213
222
.10.1016/0022-5096(65)90010-4
28.
Voigt
,
W.
,
1887
, “
Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper
,”
Ann. Phys.
,
274
, pp.
573
587
.10.1016/0956-7151(91)90156-U
29.
Reuss
,
A.
,
1929
, “
Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle
,”
J. Appl. Math. Mech.
,
9
, pp.
49
58
.10.1002/zamm.19290090104
30.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1963
, “
A Variational Approach to the Theory of the Elastic Behaviour of Multi-Phase Materials
,”
J. Mech. Phys. Solids
,
11
(
2
), pp.
127
140
.10.1016/0022-5096(63)90060-7
31.
Bonache
,
V.
,
Rayón
,
E.
,
Salvador
,
M. D.
, and
Busquets
,
D.
,
2010
, “
Nanoindentation Study of WC-12Co Hardmetals Obtained From Nanocrystalline Powders: Evaluation of Hardness and Modulus on Individual Phases
,”
Mater. Sci. Eng. A
,
527
(
12
), pp.
2935
2941
.10.1016/j.msea.2010.01.026
32.
Rayón
,
E.
,
Bonache
,
V.
,
Salvador
,
M. D.
,
Roa
,
J. J.
, and
Sanchez
,
E.
,
2011
, “
Hardness and Young's Modulus Distributions in Atmospheric Plasma Sprayed WC-Co Coatings Using Nanoindentation
,”
Surf. Coat. Technol.
,
205
(
17–18
), pp.
4192
4197
.10.1016/j.surfcoat.2011.03.012
33.
Peng
,
Y.
,
Miao
,
H.
, and
Peng
,
Z.
,
2013
, “
Development of TiCN-Based Cermets: Mechanical Properties and Wear Mechanism
,”
Int. J. Refract. Metal. Hard Mater.
,
39
, pp.
78
90
.10.1016/j.ijrmhm.2012.07.001
34.
Miserez
,
A.
, and
Mortensen
,
A.
,
2004
, “
Fracture of Aluminium Reinforced With Densely Packed Ceramic Particles: Influence of Matrix Hardening
,”
Acta Mater.
,
52
(
18
), pp.
5331
5345
.10.1016/j.actamat.2004.07.038
35.
Drescher
,
A.
, and
Dejossel
,
G.
,
1972
, “
Photoelastic Verification of a Mechanical Model for the Flow of a Granular Material
,”
J. Mech. Phys. Solids
,
20
(
5
), pp.
337
340
.10.1016/0022-5096(72)90029-4
36.
Travers
,
T.
,
Ammi
,
M.
,
Bideau
,
D.
,
Messager
,
J. C.
, and
Troadec
,
J. P.
,
1987
, “
Uniaxial Compression of 2d Packings of Cylinders, Effect of Weak Disorder
,”
Europhys. Lett.
,
4
(
3
), pp.
329
332
.10.1209/0295-5075/4/3/012
37.
Liu
,
C. H.
,
Nagel
,
S. R.
,
Schecter
,
D. A.
,
Coppersmith
,
S. N.
,
Majumdar
,
S.
,
Narayan
,
O.
, and
Witten
,
T. A.
,
1995
, “
Force Fluctuations in Bead Packs
,”
Science
,
269
(
5223
), pp.
513
515
.10.1126/science.269.5223.513
38.
German
,
R. M.
,
1989
,
Particle Packing Characteristics
,
Metal Powder Industries Federation
,
Princeton
.
39.
McGeary
,
R. K.
,
1961
, “
Mechanical Packing of Spherical Particles
,”
J. Am. Ceram. Soc.
,
44
(
10
), pp.
513
522
.10.1111/j.1151-2916.1961.tb13716.x
40.
Bolton
,
M. D.
,
1986
, “
The Strength and Dilatancy of Sands
,”
Geotechnique
,
36
(
1
), pp.
65
78
.10.1680/geot.1986.36.1.65
41.
Lubachevsky
,
B. D.
, and
Stillinger
,
F. H.
,
1990
, “
Geometric Properties of Random Disk Packings
,”
J. Stat. Phys.
,
60
(
5–6
), pp.
561
583
.10.1007/BF01025983
42.
Lubachevsky
,
B. D.
,
Stillinger
,
F. H.
, and
Pinson
,
E. N.
,
1991
, “
Disks vs Spheres—Contrasting Properties of Random Packings
,”
J. Stat. Phys.
,
64
(
3–4
), pp.
501
524
.10.1007/BF01048304
43.
Talbot
,
D. R. S.
, and
Willis
,
J. R.
,
1985
, “
Variational Principles for Inhomogeneous Non-Linear Media
,”
IMA J. Appl. Math.
,
35
(
1
), pp.
39
54
.10.1093/imamat/35.1.39
44.
Ponte Castañeda
,
P.
,
1991
, “
The Effective Mechanical Properties of Nonlinear Isotropic Composite
,”
J. Mech. Phys. Solids
,
39
(
1
), pp.
45
71
.10.1016/0022-5096(91)90030-R
45.
Suquet
,
P. M.
,
1993
, “
Overall Potentials and Extremal Surfaces of Power Law or Ideally Plastic Composites
,”
J. Mech. Phys. Solids
,
41
(
6
), pp.
981
1002
.10.1016/0022-5096(93)90051-G
46.
McLaughlin
,
R.
,
1977
, “
A Study of the Differential Scheme for Composite Materials
,”
Int. J. Eng. Sci.
,
15
(
4
), pp.
237
244
.10.1016/0020-7225(77)90058-1
47.
Hashin
,
Z.
,
1962
, “
The Elastic Moduli of Heterogeneous Materials
,”
ASME J. Appl. Mech.
,
29
(
1
), pp.
143
150
.10.1115/1.3636446
48.
Begley
,
M. R.
,
Philips
,
N. R.
,
Compton
,
B. G.
,
Wilbrink
,
D. V.
,
Ritchie
,
R. O.
, and
Utz
,
M.
,
2012
, “
Micromechanical Models to Guide the Development of Brick and Mortar Composites
,”
J. Mech. Phys. Solids
,
60
(
8
), pp.
1545
1560
.10.1016/j.jmps.2012.03.002
You do not currently have access to this content.