A new theory, inspired by analogy with turbulence, was recently proposed to model the apparent dynamic overstress due to the energy that is dissipated by material comminution during penetration of missiles into concrete walls. The high-rate interface fracture comminuting the material to small particles was considered to be driven by the release of kinetic energy of high-rate shear of the forming particles, and the corresponding energy dissipation rate was characterized in the damage constitutive law by additional viscosity. However, in spite of greatly improved predictions for missile impact and penetration, the calculation of viscosity involved two simplifications—one crude simplification in the calculation of viscosity from the shear strain rate, and another debatable simplification in treating the comminution as an instantaneous event, as in the classical rate-independent fracture mechanics. Presented is a refined theory in which both simplifications are avoided without making the theory significantly more complicated. The interface fracture is considered to be progressive and advance according to Evans' power law extended to the fast growth of interface crack area. The growth rate of interface cracks naturally leads to an additional viscosity, which allows close matching of the published test data. In combination with the microplane damage constitutive model M7 for concrete, the refined theory gives a close match of the exit velocities of missiles penetrating concrete walls of different thicknesses and of the penetration depths of missiles of different velocities into a massive block.

References

References
1.
Freund
,
L. B.
,
1998
,
Dynamic Fracture Mechanics
, Cambridge University Press, New York.
2.
Adley
,
M. D.
,
Frank
,
A. O.
, and
Danielson
,
K. T.
,
2012
, “
The High-Rate Brittle Microplane Concrete Model: Part I: Bounding Curves and Quasi-Static Fit to Material Property Data
,”
Comput. Concr.
,
9
(
4
), pp.
293
310
.10.12989/cac.2012.9.4.293
3.
Cadoni
,
E.
,
Labibes
,
K.
,
Albertini
,
C.
,
Berra
,
M.
, and
Giangrasso
,
M.
,
2001
, “
Strain-Rate Effect on the Tensile Behaviour of Concrete at Different Relative Humidity Levels
,”
Mater. Struct.
,
34
(
1
), pp.
21
26
.10.1007/BF02482196
4.
Camacho
,
G.
, and
Ortiz
,
M.
,
1996
, “
Computational Modelling of Impact Damage in Brittle Materials
,”
Int. J. Solids Struct.
,
33
(
20
), pp.
2899
2938
.10.1016/0020-7683(95)00255-3
5.
Deshpande
,
V.
, and
Evans
,
A.
,
2008
, “
Inelastic Deformation and Energy Dissipation in Ceramics: A Mechanism-Based Constitutive Model
,”
J. Mech. Phys. Solids
,
56
(
10
), pp.
3077
3100
.10.1016/j.jmps.2008.05.002
6.
Doyoyo
,
M.
,
2002
, “
A Theory of the Densification-Induced Fragmentation in Glasses and Ceramics Under Dynamic Compression
,”
Int. J. Solids Struct.
,
39
(
7
), pp.
1833
1843
.10.1016/S0020-7683(01)00278-5
7.
Ferri
,
E.
,
Deshpande
,
V.
, and
Evans
,
A.
,
2010
, “
The Dynamic Strength of a Representative Double Layer Prismatic Core: A Combined Experimental, Numerical, and Analytical Assessment
,”
ASME J. Appl. Mech.
,
77
(
6
), p.
061011
.10.1115/1.4000905
8.
Forquin
,
P.
,
Gary
,
G.
, and
Gatuingt
,
F.
,
2008
, “
A Testing Technique for Concrete Under Confinement at High Rates of Strain
,”
Int. J. Impact Eng.
,
35
(
6
), pp.
425
446
.10.1016/j.ijimpeng.2007.04.007
9.
Frank
,
A. O.
,
Adley
,
M. D.
,
Danielson
,
K. T.
, and
McDevitt
,
H. S.
, Jr.
,
2012
, “
The High-Rate Brittle Microplane Concrete Model: Part II: Application to Projectile Perforation of Concrete Slabs
,”
Comput. Concr.
,
9
(4), pp.
311
325
.10.12989/cac.2012.9.4.311
10.
Gailly
,
B. A.
, and
Espinosa
,
H. D.
,
2002
, “
Modelling of Failure Mode Transition in Ballistic Penetration With a Continuum Model Describing Microcracking and Flow of Pulverized Media
,”
Int. J. Numer. Methods Eng.
,
54
(
3
), pp.
365
398
.10.1002/nme.427
11.
Gatuingt
,
F.
, and
PijaudierCabot
,
G.
,
2002
, “
Coupled Damage and Plasticity Modelling in Transient Dynamic Analysis of Concrete
,”
Int. J. Numer. Anal. Methods Geomech.
,
26
(
1
), pp.
1
24
.10.1002/nag.188
12.
Grady
,
D.
,
1982
, “
Local Inertial Effects in Dynamic Fragmentation
,”
J. Appl. Phys.
,
53
(
1
), pp.
322
325
.10.1063/1.329934
13.
Grady
,
D.
,
1998
, “
Shock-Wave Compression of Brittle Solids
,”
Mech. Mater.
,
29
(
3–4
), pp.
181
203
.10.1016/S0167-6636(98)00015-5
14.
Grady
,
D.
, and
Kipp
,
M.
,
1979
, “
The Micromechanics of Impact Fracture of Rock
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
16
(
5
), pp.
293
302
.10.1016/0148-9062(79)90240-7
15.
Grady
,
D.
, and
Kipp
,
M.
,
1995
, “
Experimental Measurement of Dynamic Failure and Fragmentation Properties of Metals
,”
Int. J. Solids Struct.
,
32
(
17
), pp.
2779
2791
.10.1016/0020-7683(94)00297-A
16.
Grady
,
D. E.
,
1990
, “
Particle Size Statistics in Dynamic Fragmentation
,”
J. Appl. Phys.
,
68
(
12
), pp.
6099
6105
.10.1063/1.347188
17.
Hemmert
,
D. J.
,
Smirnov
,
V. I.
,
Awal
,
R.
,
Lati
,
S.
, and
Shetty
,
A.
,
2010
, “
Pulsed Power Generated Shockwaves in Liquids From Exploding Wires and Foils for Industrial Applications
,”
16th International Symposium on High Current Electronics
(
16th SHCE
), Tomsk, Russia, Sept. 19–24, pp.
537
540
.
18.
Kožar
,
I.
, and
Ožbolt
,
J.
,
2010
, “
Some Aspects of Load-Rate Sensitivity in Visco-Elastic Microplane Material Model
,”
Comput. Concrete
,
7
(
4
), pp.
317
329
.10.12989/cac.2010.7.4.317
19.
Mescall
,
J.
, and
Weiss
,
V.
, eds.,
1983
,
Materials Behavior Under High Stress and Ultrahigh Loading Rates. Part II
(Sagamore Army Materials Research Conference Proceedings, Vol. 29
), Plenum Press, New York. 10.1007/978-1-4613-3787-4
20.
Maurel
,
O.
,
Reess
,
T.
,
Matallah
,
M.
,
De Ferron
,
A.
,
Chen
,
W.
,
La Borderie
,
C.
,
Pijaudier-Cabot
,
G.
,
Jacques
,
A.
, and
Rey-Bethbeder
,
F.
,
2010
, “
Electrohydraulic Shock Wave Generation as a Means to Increase Intrinsic Permeability of Mortar
,”
Cem. Concr. Res.
,
40
(
12
), pp.
1631
1638
.10.1016/j.cemconres.2010.07.005
21.
Mott
,
N.
,
1947
, “
Fragmentation of Shell Cases
,”
Proc. R. Soc. London, Ser. A
,
189
(1018), pp.
300
308
.10.1098/rspa.1947.0042
22.
Obolt
,
J.
,
Sharma
,
A.
, and
Reinhardt
,
H.-W.
,
2011
, “
Dynamic Fracture of Concrete Compact Tension Specimen
,”
Int. J. Solids Struct.
,
48
(
10
), pp.
1534
1543
.10.1016/j.ijsolstr.2011.01.033
23.
Shih
,
C.
,
Nesterenko
,
V.
, and
Meyers
,
M.
,
1998
, “
High-Strain-Rate Deformation and Comminution of Silicon Carbide
,”
J. Appl. Phys.
,
83
(
9
), pp.
4660
4671
.10.1063/1.367252
24.
Wei
,
Z.
,
Evans
,
A.
, and
Deshpande
,
V.
,
2009
, “
The Influence of Material Properties and Confinement on the Dynamic Penetration of Alumina by Hard Spheres
,”
ASME J. Appl. Mech.
,
76
(
5
), p.
051305
.10.1115/1.3129765
25.
Bažant
,
Z. P.
, and
Caner
,
F. C.
,
2014
, “
Impact Comminution of Solids Due to Local Kinetic Energy of High Shear Strain Rate: I. Continuum Theory and Turbulence Analogy
,”
J. Mech. Phys. Solids
,
64
, pp.
223
235
.10.1016/j.jmps.2013.11.008
26.
Bažant
,
Z. P.
, and
Caner
,
F. C.
,
2013
, “
Comminution of Solids Caused by Kinetic Energy of High Shear Strain Rate, With Implications for Impact, Shock, and Shale Fracturing
,”
Proc. Natl. Acad. Sci.
,
110
(
48
), pp.
19291
19294
.10.1073/pnas.1318739110
27.
Caner
,
F. C.
, and
Bažant
,
Z. P.
,
2014
, “
Impact Comminution of Solids Due to Local Kinetic Energy of High Shear Strain Rate: II. Microplane Model and Verification
,”
J. Mech. Phys. Solids
,
64
(
1
), pp.
236
248
.10.1016/j.jmps.2013.11.009
28.
Schuhmann
,
R.
, Jr.
,
1940
, “
Principles of Comminution, I—Size Distribution and Surface Calculations
,” American Institute of Mining, Metallurgical, and Petroleum Engineers, Englewood, CO, AIME Technical Publication No. 1189.
29.
Charles
,
R. J.
,
1957
, “
Energy-Size Reduction Relationships in Comminution
,”
Trans. Am. Inst. Min. Metall. Eng.
,
208
(1), pp.
80
88
.
30.
Ouchterlony
,
F.
,
2005
, “
The Swebrec Function: Linking Fragmentation by Blasting and Crushing
,”
Min. Technol.
,
114
(
1
), pp.
29
44
.10.1179/037178405X44539
31.
Su
,
Y.
,
Bažant
,
Z. P.
,
Zhao
,
Y.
,
Salviato
,
M.
, and
Kedar
,
K.
,
2015
, “
Viscous Energy Dissipation of Kinetic Energy of Particles Comminuted by High-Rate Shearing Under Missile Impact
,”
Int. J. Fract.
, (in press).
32.
Evans
,
A. G.
,
1972
, “
A Method for Evaluating the Time-Dependent Failure Characteristics of Brittle Materials—and Its Application to Polycrystalline Alumina
,”
J. Mater. Sci.
,
7
(10), pp.
1137
1146
.10.1007/BF00550196
33.
Le
,
J.-L.
,
Bažant
,
Z. P.
, and
Bazant
,
M. Z.
,
2011
, “
Unified Nano-Mechanics Based Probabilistic Theory of Quasibrittle and Brittle Structures: I. Strength, Static Crack Growth, Life Time and Scaling
,”
J. Mech. Phys. Solids
,
59
(
7
), pp.
1291
1321
.10.1016/j.jmps.2011.03.002
34.
Paliwal
,
B.
, and
Ramesh
,
K. T.
,
2008
, “
An Interacting Micro-Crack Damage Model for Failure of Brittle Materials Under Compression
,”
J. Mech. Phys. Solids
,
56
(
3
), pp.
896
923
.10.1016/j.jmps.2007.06.012
35.
Deng
,
H.
, and
Nemat-Nasser
,
S.
,
1992
, “
Dynamic Damage Evolution in Brittle Solids
,”
Mech. Mater.
,
14
(
2
), pp.
83
104
.10.1016/0167-6636(92)90008-2
36.
Bažant
,
Z. P.
,
Le
,
J.-L.
, and
Bazant
,
M. Z.
,
2008
, “
Size Effect on Strength and Lifetime Distributions of Quasibrittle Structures Implied by Interatomic Bond Break Activation
,”
17th European Conference on Fracture (ECF-17)
, Brno, Czech Republic, Sept. 2–5, pp.
78
92
.
37.
Cargile
,
J. D.
,
1999
, “
Development of a Constitutive Model for Numerical Simulation of Projectile Penetration into Brittle Geomaterials
,” U.S. Army Engineer Research and Development Center, Vicksburg, MS, Technical Report No. SL-99-11.
38.
Caner
,
F. C.
, and
Bažant
,
Z. P.
,
2013
, “
Microplane Model M7 for Plain Concrete. I: Formulation
,”
J. Eng. Mech.
,
139
(
12
), pp.
1714
1723
.10.1061/(ASCE)EM.1943-7889.0000570
39.
Caner
,
F. C.
, and
Bažant
,
Z. P.
,
2012
, “
Microplane Model M7 for Plain Concrete. II: Calibration and Verification
,”
J. Eng. Mech.
,
139
(12), pp.
1724
1735
.10.1061/(ASCE)EM.1943-7889.0000571
40.
Bažant
,
Z. P.
, and
Caner
,
F. C.
,
2014
, “
Corrigendum to Impact Comminution of Solids Due to Local Kinetic Energy of High Shear Strain Rate: I. Continuum Theory and Turbulence Analogy [J. Mech. Phys. Solids 64 (2014) 223–235]
,”
J. Mech. Phys. Solids
67
(
1
), p.
14
.10.1016/j.jmps.2014.03.001
You do not currently have access to this content.