Internal resonance is explored as a possible mechanism to enhance vibration-based energy harvesting. An electromagnetic device with snap-through nonlinearity is proposed as an archetype of an internal resonance energy harvester. Based on the equations governing the vibration measured from a stable equilibrium position, the method of multiple scales is applied to derive the amplitude–frequency response relationships of the displacement and the power in the first primary resonances with the two-to-one internal resonance. The amplitude–frequency response curves have two peaks bending to the left and the right, respectively. The numerical simulations support the analytical results. Then the averaged power is calculated under the Gaussian white noise, the narrow-band noise, the colored noise defined by a second-order filter, and the exponentially correlated noise. The results demonstrate numerically that the internal resonance design produces more power than other designs under the Gaussian white noise and the exponentially correlated noise. Besides, the internal resonance energy harvester can outperform the linear energy harvesters with the same natural frequencies and in the same size under Gaussian white noise.

References

References
1.
Tang
,
L. H.
,
Yang
,
Y. W.
, and
Soh
,
C. K.
,
2010
, “
Toward Broadband Vibration-Based Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
21
(
18
), pp.
1867
1897
.10.1177/1045389X10390249
2.
Zhu
,
D.
,
Tudor
,
M. J.
, and
Beeby
,
S. P.
,
2010
, “
Strategies for Increasing the Operating Frequency Range of Vibration Energy Harvesters: A Review
,”
Meas. Sci. Technol.
,
21
(
2
), p.
022001
.10.1088/0957-0233/21/2/022001
3.
Daqaq
,
M. F.
,
Masana
,
R.
,
Erturk
,
A.
, and
Quinn
,
D. D.
,
2014
, “
On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040801
.10.1115/1.4026278
4.
Cottone
,
F.
,
Vocca
,
H.
, and
Gammaitoni
,
L.
,
2009
, “
Nonlinear Energy Harvesting
,”
Phys. Rev. Lett.
,
102
(
8
), p.
080601
.10.1103/PhysRevLett.102.080601
5.
Erturk
,
A.
,
Homann
,
J.
, and
Inman
,
D. J.
,
2009
, “
A Piezomagnetoelastic Structure for Broadband Vibration Energy Harvesting
,”
Appl. Phys. Lett.
,
94
(
25
), p.
254102
.10.1063/1.3159815
6.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting Via Bistable Systems
,”
Smart Mater. Struct.
,
22
(
2
), p.
023001
.10.1088/0964-1726/22/2/023001
7.
Pellegrini
,
S. P.
,
Tolou
,
N.
,
Schenk
,
M.
, and
Herder
,
J. L
,
2013
, “
Bistable Vibration Energy Harvesters: A Review
,”
J. Intell. Mater. Syst. Struct.
,
24
(
11
), pp.
1303
1312
.10.1177/1045389X12444940
8.
Mann
,
B. P.
, and
Sims
,
N. D.
,
2009
, “
Energy Harvesting From the Nonlinear Oscillations of Magnetic Levitation
,”
J. Sound Vib.
,
319
(
1–2
), pp.
515
530
.10.1016/j.jsv.2008.06.011
9.
Barton
,
D. W.
,
Burrow
,
S. G.
, and
Clare
,
L. R.
,
2010
, “
Energy Harvesting From Vibrations With a Nonlinear Oscillator
,”
ASME J. Vib. Acoust.
,
132
(
2
), p.
021009
.10.1115/1.4000809
10.
Quinn
,
D. D.
,
Triplett
,
A. L.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2011
, “
Energy Harvesting From Impulsive Loads Using Intentional Essential Nonlinearities
,”
ASME J. Vib. Acoust.
,
133
(
1
), p.
011004
.10.1115/1.4002787
11.
Masana
,
R.
, and
Daqaq
,
M. F.
,
2011
, “
Electromechanical Modeling and Nonlinear Analysis of Axially Loaded Energy Harvesters
,”
ASME J. Vib. Acoust.
,
133
(
1
), p.
011007
.10.1115/1.4002786
12.
Wu
,
Z.
,
Harne
,
R. L.
, and
Wang
,
K. W.
,
2014
, “
Energy Harvester Synthesis Via Coupled Linear Bistable System With Multistable Dynamics
,”
ASME J. Appl. Mech.
,
81
(
6
), p.
061005
.10.1115/1.4026555
13.
Xie
,
L.
, and
Du
,
R.
,
2014
, “
Frequency Tuning of a Nonlinear Electromagnetic Energy Harvester
,”
ASME J. Vib. Acoust.
,
136
(
1
), p.
011010
.10.1115/1.4025445
14.
Nayfeh
,
A. H.
,
2000
,
Nonlinear Interactions: Analytical, Computational, and Experimental Methods
,
Wiley
,
Hoboken, NJ
.
15.
Chen
,
L. Q.
,
Zhang
,
Y. L.
,
Zhang
,
G. C.
, and
Ding
,
H.
,
2014
, “
Evolution of the Double-Jumping in Pipes Conveying Fluid Flowing in the Supercritical Speed
,”
Int. J. Nonlinear Mech.
,
58
(
1
), pp.
11
21
.10.1016/j.ijnonlinmec.2013.08.012
16.
Wu
,
H.
,
Tang
,
L.
,
Yang
,
Y.
, and,
Soh
,
C. K.
,
2014
, “
Development of a Broadband Nonlinear Two-Degree-of-Freedom Piezoelectric Energy Harvester
,”
J. Intell. Mater. Syst. Struct.
,
25
(
25
), pp.
1875
1889
.10.1177/1045389X14541494
17.
Tang
,
L.
, and
Yang
,
Y.
,
2012
, “
A Nonlinear Piezoelectric Energy Harvester With Magnetic Oscillator
,”
Appl. Phys. Lett.
,
101
(
9
), p.
094102
.10.1063/1.4748794
18.
Thompson
,
J. M. T.
, and
Hunt
,
G. W.
,
1973
,
A General Theory of Elastic Stability
,
Wiley
,
London
.
19.
McInnes
,
C. R.
,
Gorman
,
D. G.
, and
Cartmell
,
M. P.
,
2008
, “
Enhanced Vibrational Energy Harvesting Using Nonlinear Stochastic Resonance
,”
J. Sound Vib.
,
318
(
4–5
), pp.
655
662
.10.1016/j.jsv.2008.07.017
20.
Ramlan
,
R.
,
Brennan
,
M. J.
,
Mace
,
B. R.
, and
Kovacic
,
I.
,
2010
, “
Potential Benefits of a Non-Linear Stiffness in an Energy Harvesting Device
,”
Nonlinear Dyn.
,
59
(
4
), pp.
545
558
.10.1007/s11071-009-9561-5
21.
Li
,
Y.
, and
Xiong
,
Y. P.
,
2013
, “
On the Energy Harvesting Potential of a Nonlinear Oscillator
,”
15th Asia Pacific Vibration Conference
(
APVC
), Jeju Island, Korea, June 2–6, pp.
760
765
.
22.
Jiang
,
W. A.
, and
Chen
,
L. Q.
,
2014
, “
Snap-Through Piezoelectric Energy Harvesting
,”
J. Sound Vib.
,
333
(
18
), pp.
4314
4325
.10.1016/j.jsv.2014.04.035
23.
Daqaq
,
M. F.
,
2010
, “
Response of Uni-Modal Duffing Type Harvesters to Random Forced Excitations
,”
J. Sound Vib.
,
329
(
18
), pp.
3621
3631
.10.1016/j.jsv.2010.04.002
24.
Daqaq
,
M. F.
,
2012
, “
On Intentional Introduction of Stiffness Nonlinearities for Energy Harvesting Under White Gaussian Excitations
,”
Nonlinear Dyn.
,
69
(
3
), pp.
1063
1079
.10.1007/s11071-012-0327-0
25.
Halvorsen
,
E.
,
2013
, “
Fundamental Issues in Nonlinear Wideband-Vibration Energy Harvesting
,”
Phys. Rev. E
,
87
(
4
), p.
042129
.10.1103/PhysRevE.87.042129
26.
Green
,
P. L.
,
Worden
,
K.
,
Atalla
,
K.
, and
Sims
,
N. D.
,
2012
, “
The Benefits of Duffing-Type Nonlinearities and Electrical Optimization of a Mono-Stable Energy Harvester Under White Gaussian Excitations
,”
J. Sound Vib.
,
331
(
20
), pp.
4504
4517
.10.1016/j.jsv.2012.04.035
27.
Zhao
,
S.
, and
Erturk
,
A.
,
2013
, “
On the Stochastic Excitation of Monostable and Bistable Electroelastic Power Generators: Relative Advantages and Tradeoffs in a Physical System
,”
Appl. Phys. Lett.
,
102
(
10
), p.
103902
.10.1063/1.4795296
28.
Daqaq
,
M. F.
,
2011
, “
Transduction of a Bistable Inductive Generator Driven by White and Exponentially Correlated Gaussian Noise
,”
J. Sound Vib.
,
330
(
11
), pp.
2554
2564
.10.1016/j.jsv.2010.12.005
29.
Leadenham
,
S.
, and
Erturk
,
A.
,
2014
, “
M-Shaped Asymmetric Nonlinear Oscillator for Broadband Vibration Energy Harvesting: Harmonic Balance Analysis and Experimental Validation
,”
J. Sound Vib.
,
333
(
23–24
), pp.
6209
6223
.10.1016/j.jsv.2014.06.046
30.
Mann
,
B. P.
, and
Owens
,
B. A.
,
2010
, “
Investigations of a Nonlinear Energy Harvester With a Bistable Potential Well
,”
J. Sound Vib.
,
329
(
9
), pp.
1215
1226
.10.1016/j.jsv.2009.11.034
31.
Wedig
,
W. V.
,
1990
, “
Invariant Measures and Lyapunov Exponents for Generalized Parameter Fluctuations
,”
Struct. Saf.
,
8
(
1–4
), pp.
13
25
.10.1016/0167-4730(90)90028-N
You do not currently have access to this content.