Two-phase advanced steels have an optimized combination of high yield strength and large elongation strain at failure, as a result of stress partitioning between a hard phase (martensite) and a ductile phase (ferrite or austenite). Provided with strong interfaces between the constituent phases, the failure in the brittle martensite phase will be delayed by the surrounding geometric constraints, while the rule of mixture will dictate a large strength of the composite. To this end, the microstructural design of these composites is imperative especially in terms of the stress partitioning mechanisms among the constituent phases. Based on the characteristic microstructures of dual phase and multilayered steels, two polycrystalline aggregate models are constructed to simulate the microscopic lattice strain evolution of these materials during uniaxial tensile tests. By comparing the lattice strain evolution from crystal plasticity finite element simulations with advanced in situ diffraction measurements in literature, this study investigates the correlations between the material microstructure and the micromechanical interactions on the intergranular and interphase levels. It is found that although the applied stress will be ultimately accommodated by the hard phase and hard grain families, the sequence of the stress partitioning on grain and phase levels can be altered by microstructural designs. Implications of these findings on delaying localized failure are also discussed.

References

References
1.
Barabash
,
R. I.
,
Barabash
,
O. M.
,
Ojima
,
M.
,
Yu
,
Z.
,
Inoue
,
J.
,
Nambu
,
S.
,
Koseki
,
T.
,
Xu
,
R.
, and
Feng
,
Z.
,
2014
, “
Interphase Strain Gradients in Multilayered Steel Composite From Microdiffraction
,”
Metall. Mater. Trans. A
,
45
(
1
), pp.
98
108
.10.1007/s11661-013-2100-5
2.
Chen
,
P.
,
Ghassemi-Armaki
,
H.
,
Kumar
,
S.
,
Bower
,
A.
,
Bhat
,
S.
, and
Sadagopan
,
S.
,
2014
, “
Microscale-Calibrated Modeling of the Deformation Response of Dual-Phase Steels
,”
Acta Mater.
,
65
, pp.
133
149
.10.1016/j.actamat.2013.11.036
3.
Kim
,
D. H.
,
Kim
,
S.-J.
,
Kim
,
S.-H.
,
Rollett
,
A. D.
,
Oh
,
K. H.
, and
Han
,
H. N.
,
2011
, “
Microtexture Development During Equibiaxial Tensile Deformation in Monolithic and Dual Phase Steels
,”
Acta Mater.
,
59
(
14
), pp.
5462
5471
.10.1016/j.actamat.2011.05.020
4.
Jia
,
N.
,
Cong
,
Z. H.
,
Sun
,
X.
,
Cheng
,
S.
,
Nie
,
Z. H.
,
Ren
,
Y.
,
Liaw
,
P. K.
, and
Wang
,
Y. D.
,
2009
, “
An In Situ High-Energy X-Ray Diffraction Study of Micromechanical Behavior of Multiple Phases in Advanced High-Strength Steels
,”
Acta Mater.
,
57
(
13
), pp.
3965
3977
.10.1016/j.actamat.2009.05.002
5.
Ojima
,
M.
,
Inoue
,
J.
,
Nambu
,
S.
,
Xu
,
P.
,
Akita
,
K.
,
Suzuki
,
H.
, and
Koseki
,
T.
,
2012
, “
Stress Partitioning Behavior of Multilayered Steels During Tensile Deformation Measured by In Situ Neutron Diffraction
,”
Scr. Mater.
,
66
(
3–4
), pp.
139
142
.10.1016/j.scriptamat.2011.10.018
6.
Koseki
,
T.
,
Inoue
,
J.
, and
Nambu
,
S.
,
2014
, “
Development of Multilayer Steels for Improved Combinations of High Strength and High Ductility
,”
Mater. Trans.
,
55
(
2
), pp.
227
237
.10.2320/matertrans.M2013382
7.
Ohashi
,
T.
,
Roslan
,
L.
,
Takahashi
,
K.
,
Shimokawa
,
T.
,
Tanaka
,
M.
, and
Higashida
,
K.
,
2013
, “
A Multiscale Approach for the Deformation Mechanism in Pearlite Microstructure: Numerical Evaluation of Elasto-Plastic Deformation in Fine Lamellar Structures
,”
Mater. Sci. Eng. A
,
588
, pp.
214
220
.10.1016/j.msea.2013.09.032
8.
Zheng
,
L. L.
,
Gao
,
Y. F.
,
Wang
,
Y. D.
,
Stoica
,
A. D.
,
An
,
K.
, and
Wang
,
X. L.
,
2013
, “
Grain Orientation Dependence of Lattice Strains and Intergranular Damage Rates in Polycrystals Under Cyclic Loading
,”
Scr. Mater.
,
68
(
5
), pp.
265
268
.10.1016/j.scriptamat.2012.10.033
9.
Zheng
,
L. L.
,
Gao
,
Y. F.
,
Lee
,
S. Y.
,
Barabash
,
R. I.
,
Lee
,
J. H.
, and
Liaw
,
P. K.
,
2011
, “
Intergranular Strain Evolution Near Fatigue Crack Tips in Polycrystalline Metals
,”
J. Mech. Phys. Solids
,
59
(
11
), pp.
2307
2322
.10.1016/j.jmps.2011.08.001
10.
Wong
,
S. L.
, and
Dawson
,
P. R.
,
2010
, “
Influence of Directional Strength-to-Stiffness on the Elastic–Plastic Transition of FCC Polycrystals Under Uniaxial Tensile Loading
,”
Acta Mater.
,
58
(
5
), pp.
1658
1678
.10.1016/j.actamat.2009.11.009
11.
Clausen
,
B.
,
Lorentzen
,
T.
, and
Leffers
,
T.
,
1998
, “
Self-Consistent Modelling of the Plastic Deformation of f.c.c. Polycrystals and Its Implications for Diffraction Measurements of Internal Stresses
,”
Acta Mater.
,
46
(
9
), pp.
3087
3098
.10.1016/S1359-6454(98)00014-7
12.
Jia
,
N.
,
Lin Peng
,
R.
,
Wang
,
Y. D.
,
Johansson
,
S.
, and
Liaw
,
P. K.
,
2008
, “
Micromechanical Behavior and Texture Evolution of Duplex Stainless Steel Studied by Neutron Diffraction and Self-Consistent Modeling
,”
Acta Mater.
,
56
(
4
), pp.
782
793
.10.1016/j.actamat.2007.10.040
13.
Saylor
,
D.
,
Fridy
,
J.
,
El-Dasher
,
B.
,
Jung
,
K.-Y.
, and
Rollett
,
A.
,
2004
, “
Statistically Representative Three-Dimensional Microstructures Based on Orthogonal Observation Sections
,”
Metall. Mater. Trans. A
,
35
(
7
), pp.
1969
1979
.10.1007/s11661-004-0146-0
14.
Tanaka
,
Y.
,
Kishimoto
,
S.
,
Yin
,
F.
,
Kobayshi
,
M.
,
Tomimatsu
,
T.
, and
Kagawa
,
K.
,
2009
, “
Multi-Scale Deformation Behavior for Multi-Layer Steel by In-Situ FE-SEM
,”
Proc. SPIE
,
7522
, p.
75220N
.10.1117/12.851570
15.
Feng
,
K.
,
Cai
,
X.
,
Li
,
Z.
, and
Chu
,
P. K.
,
2012
, “
Improved Corrosion Resistance of Stainless Steel 316L by Ti Ion Implantation
,”
Mater. Lett.
,
68
, pp.
450
452
.10.1016/j.matlet.2011.11.014
16.
Peirce
,
D.
,
Asaro
,
R. J.
,
Needleman
,
A.
, and
Park
,
A.
,
1983
, “
Overview: Material Rate Dependence and Localized Deformation in Crystalline Solids
,”
Acta Mater.
,
31
(
12
), pp.
1951
1976
.10.1016/0001-6160(83)90014-7
17.
Huang
,
Y.
,
1991
, “
A User-Material Subroutine Incorporating Single Crystal Plasticity in the abaqus Finite Element Program
,”
Division of Engineering and Applied Science
, Harvard University, Cambridge, MA, Mechanics Report No. 179.
18.
Zheng
,
L.
,
2011
, “
Micromechanical Studies of Intergranular Strain and Lattice Misorientation Fields and Comparisons to Advanced Diffraction Measurements
,” Ph.D. thesis,
University of Tennessee
,
Knoxville, TN
.
19.
Barabash
,
R. I.
,
Bei
,
H.
,
Gao
,
Y. F.
, and
Ice
,
G. E.
,
2011
, “
Interface Strength in NiAl–Mo Composites From 3-D X-Ray Microdiffraction
,”
Scr. Mater.
,
64
(
9
), pp.
900
903
.10.1016/j.scriptamat.2011.01.028
You do not currently have access to this content.