We study the apsidal precession of a physical symmetrical pendulum (PSP) (Allais’ precession) as a generalization of the precession corresponding to the ideal spherical pendulum (ISP) (Airy’s precession). Based on the Hamilton–Jacobi formalism and using the techniques of variation of parameters along with the averaging method, we obtain approximate analytical solutions, in terms of which the motion of both systems admits a simple geometrical description. The method developed in this paper is considerably simpler than the standard one in terms of elliptical functions, and the numerical agreement with the exact solutions is excellent. In addition, the present procedure permits to show clearly the origin of the Airy’s and Allais’ precession, as well as the effect of the spin of the physical pendulum on the Allais’ precession. Further, the method could be extended to the study of the asymmetrical pendulum in which an exact analytical solution is not possible anymore.

References

References
1.
Drumheller
,
D. S.
,
2012
, “
Barometric Compensation of a Pendulum
,”
ASME J. Appl. Mech.
,
79
(6), p.
061009
.10.1115/1.4006766
2.
Schmidt
,
B. A.
, and
McDowell
,
D. G.
,
1992
, “
Analysis of a Pendulum on a Rotating Arm
,”
ASME J. Appl. Mech.
,
59
(
1
), pp.
233
234
.10.1115/1.2899442
3.
Rivas-Cambero
,
I.
, and
Sausedo-Solorio
,
J. M.
,
2012
, “
Dynamics of the Shift in Resonance Frequency in a Triple Pendulum
,”
Meccanica
,
47
(
4
), pp.
835
844
.10.1007/s11012-011-9452-y
4.
Mehidi
,
N.
,
2007
, “
Averaging and Periodic Solutions in the Plane and Parametrically Excited Pendulum
,”
Meccanica
42
(
4
), pp.
403
407.
10.1007/s11012-007-9062-x
5.
Sado
,
D.
, and
Gajos
,
K.
,
2003
, “
Note on Chaos in Three Degree of Freedom Dynamical System With Double Pendulum
,”
Meccanica
,
38
(
6
), pp.
719
729
.10.1023/A:1025825224440
6.
Dragani
,
R.
, and
Sarra
,
M.
,
1983
, “
The Centrifugal Pendulum as a Nonlinear Torsional Vibration Absorber
,”
Meccanica
,
18
(
2
), pp.
67
70
.10.1007/BF02128346
7.
Sanyal
,
A. K.
, and
Goswami
,
A.
,
2013
, “
Dynamics and Balance Control of the Reaction Mass Pendulum: A Three-Dimensional Multibody Pendulum With Variable Body Inertia
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
2
), p.
021002
.10.1115/1.4025607
8.
Masoud
,
Z. N.
, and
Alhazza
,
K. A.
,
2013
, “
Frequency-Modulation Input Shaping Control of Double-Pendulum Overhead Cranes
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
2
), p.
021005
.10.1115/1.4025796
9.
Lima
,
F. M. S.
,
2010
, “
Analytical Study of the Critical Behavior of the Nonlinear Pendulum
,”
Am. J. Phys.
78
(11), pp.
1146
1151
.10.1119/1.3442472
10.
Giltinan
,
D. A.
,
Wagner
,
D. L.
, and
Walkiewicz
,
T. A.
,
1996
, “
The Physical Pendulum on a Cylindrical Support
,”
Am. J. Phys.
64
(2), pp.
144
146
.10.1119/1.18132
11.
Olsson
,
M. G.
,
1981
, “
Spherical Pendulum Revisited
,”
Am. J. Phys.
49
(6), pp.
531
534
.10.1119/1.12666
12.
Ø
.
Grøn
,
1983
, “
A Tidal Force Pendulum
,”
Am. J. Phys.
51
(5), pp.
429
431
.10.1119/1.13230
13.
Livesey
,
D. L.
,
1987
, “
The Precession of Simple Pendulum Orbits
,”
Am. J. Phys.
55(7), pp.
618
621
.10.1119/1.15075
14.
Valéry Roy
,
R.
,
1994
, “
Averaging Method for Strongly Non-Linear Oscillators With Periodic Excitations
,”
Int. J. Non-Linear Mech.
,
29
(
5
), pp.
737
753
.10.1016/0020-7462(94)90068-X
15.
Ben Lemlih
,
A.
, and
Ellison
,
J. A.
,
1985
, “
Method of Averaging and the Quantum Anharmonic Oscillator
,”
Phys. Rev. Lett.
55
(
19
), pp.
1950
1953
.10.1103/PhysRevLett.55.1950
16.
Lagrange
,
J. L.
,
1788
,
Méchanicque Analitique
,
Veuve Desaint
,
Paris
.
17.
Poisson
,
S. D.
,
1813
, “
Sur un cas particulier du mouvement de rotation des corps pesans
,”
J. I’École Polytech.
,
9
(
16
), pp.
247
267
.
18.
Golubev
,
V. V.
,
1960
,
Lectures on Integration of Equations of Motion of a Rigid Body About a Fixed Point
,
Israeli Program for Scientific Translations
,
Israel
.
19.
Leimanis
,
E.
,
1965
,
The General Problem of the Motion of Coupled Rigid Bodies About a Fixed Point
(Springer Tracts in Natural Philosophy, Vol. 7),
Springer-Verlag
,
Berlin, Germany
.
20.
Johansen
,
K. F.
, and
Kane
,
T. R.
,
1969
, “
A Simple Description of the Motion of a Spherical Pendulum
,”
ASME J. Appl. Mech.
,
36
(
3
), pp.
76
82
.10.1115/1.3564693
21.
Miles
,
J. W.
,
1962
, “
Stability of Forced Oscillations of a Spherical Pendulum
,”
Q. Appl. Mater.
,
20
, pp.
21
32
.
22.
Hemp
,
G. W.
, and
Sethna
,
P. R.
,
1964
, “
The Effect of High-Frequency Support Oscillation on the Motion of a Spherical Pendulum
,”
ASME J. Appl. Mech.
,
31
(2), pp.
351
354
.10.1115/1.3629619
23.
Airy
,
G. B.
,
1851
, “
On the Vibration of a Free Pendulum in an Oval Differing Little From a Straight Line
,”
R. Astron. Soc.
XX
, pp.
121
130
.
24.
Olsson
,
M. G.
,
1978
, “
The Precessing Spherical Pendulum
,”
Am. J. Phys.
,
46
(11), pp.
1118
1119
.10.1119/1.11151
25.
Synge
,
J.
, and
Griffith
,
B.
,
1959
,
Principles of Mechanics
,
McGraw-Hill
,
New York
, 1959.
26.
Gusev
,
A. V.
, and
Vinogradov
,
M. P.
,
1993
, “
Angular Velocity of Rotation of the Swing Plane of a Spherical Pendulum With Anisotropic Suspension
,”
Meas. Tech.
,
36
(
10
), pp.
1078
1082
.10.1007/BF00979448
27.
Goldstein
,
H.
,
Poole
,
C.
, and
Safko
,
J.
,
2002
,
Classical Mechanics
,
3rd ed.
,
Addison-Wesley
,
New York
.
28.
Allais
,
M.
, 1
999
, “The ‘Allais Effect’ and My Experiments With the Paraconical Pendulum 1954–1960,” (A memoir prepared for NASA), available at: http://www.allais.info/alltrans/nasareport.pdf
29.
Goodey
,
T. J.
,
Pugash
,
A. F.
, and
Olenici
,
D.
,
2010
, “
Correlated Anomalous Effects Observed During the August 1st 2008 Solar Eclipse
,”
J. Adv. Res. Phys.
,
1
(
2
), p.
021007
.
30.
Saxl
,
E. J.
, and
Allen
,
M.
,
1971
, “
1970 Solar Eclipse as Seen by a Torsion Pendulum
,”
Phys. Rev. D
,
3
(
4
), pp.
823
825
.10.1103/PhysRevD.3.823
31.
Bogolyubov
,
N.
, and
Mitropolsky
,
Y.
,
1961
,
Asymptotic Methods in Theory on Nonlinear Oscillations, Gordon and Breach
,
New York
.
32.
Brizard
,
A. J.
,
2007
, “
A Primer on Elliptic Functions With Applications in Classical Mechanics
,” e-print arXiv:0711.4064.
33.
Lima
,
F. M. S.
,
2008
, “
Simple Log Formulae for Pendulum Motion Valid for Any Amplitude
,”
Eur. J. Phys.
,
29
(5), pp.
1091
1098
.10.1088/0143-0807/29/5/021
You do not currently have access to this content.