There is compelling evidence for the critical role of twin boundaries in imparting the extraordinary combination of strength and ductility to nanotwinned metals. This paper presents a study of the thermal expansion of coherent twin boundaries (CTBs) at finite temperature by way of atomistic simulations. The simulations reveal that for all twin boundary spacings d, the thermal expansion induced stress varies as 1/d. This surprisingly long-range effect is attributed to the inhomogeneity in the thermal expansion coefficient due to the interfacial regions.

References

References
1.
Lu
,
L.
,
Shen
,
Y.
,
Chen
,
X.
,
Qian
,
L.
, and
Lu
,
K.
,
2004
, “
Ultrahigh Strength and High Electrical Conductivity in Copper
,”
Science
,
304
(
5669
), pp.
422
426
.10.1126/science.1092905
2.
Zhang
,
X.
,
Wang
,
H.
,
Chen
,
X. H.
,
Lu
,
L.
,
Lu
,
K.
,
Hoagland
,
R. G.
, and
Misra
,
A.
,
2006
, “
High-Strength Sputter-Deposited Cu Foils With Preferred Orientation of Nanoscale Growth Twins
,”
Appl. Phys. Lett.
,
88
(
17
), p.
173116
.10.1063/1.2198482
3.
Hodge
,
A. M.
,
Wang
,
Y. M.
, and
Barbee
, Jr.,
T. W.
,
2008
, “
Mechanical Deformation of High-Purity Sputter-Deposited Nano-Twinned Copper
,”
Scr. Mater.
,
59
(
2
), pp.
163
166
.10.1016/j.scriptamat.2008.02.048
4.
Lu
,
K.
,
Lu
,
L.
, and
Suresh
,
S.
,
2009
, “
Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale
,”
Science
,
324
(
5925
), pp.
349
352
.10.1126/science.1159610
5.
Kulkarni
,
Y.
,
Asaro
,
R. J.
, and
Farkas
,
D.
,
2009
, “
Are Nano-Twinned Structures in FCC Metals Optimal for Strength, Ductility, and Grain Stability
,”
Scr. Mater.
,
60
(
7
), pp.
532
535
.10.1016/j.scriptamat.2008.12.007
6.
Kulkarni
,
Y.
, and
Asaro
,
R. J.
,
2009
, “
Are Some Nano-Twinned FCC Metals Optimal for Strength and Grain Stability
,”
Acta Mater.
,
57
(
16
), pp.
4835
4844
.10.1016/j.actamat.2009.06.047
7.
Dao
,
M.
,
Lu
,
L.
,
Shen
,
Y. F.
, and
Suresh
,
S.
,
2006
, “
Strength, Strain-Rate Sensitivity and Ductility of Copper With Nanoscale Twins
,”
Acta Mater.
,
54
(
20
), pp.
5421
5432
.10.1016/j.actamat.2006.06.062
8.
Bezares
,
J.
,
Jiao
,
S.
,
Liu
,
Y.
,
Bufford
,
D.
,
Lu
,
L.
,
Zhang
,
X.
,
Kulkarni
,
Y.
, and
Asaro
,
R. J.
,
2012
, “
Indentation of Nano-Twinned FCC Metals: Implications for Nano-Twin Stability
,”
Acta Mater.
,
60
(
11
), pp.
4623
4635
.10.1016/j.actamat.2012.03.020
9.
Demkowicz
,
M.
,
Anderoglu
,
O.
,
Zhang
,
X.
, and
Misra
,
A.
,
2011
, “
The Influence of Sigma 3 Twin Boundaries on the Formation of Radiation-Induced Defect Clusters in Nanotwinned Cu
,”
J. Mater. Res.
,
26
(
14
), pp.
1666
1675
.10.1557/jmr.2011.56
10.
Yu
,
K. Y.
,
Bufford
,
D.
,
Sun
,
C.
,
Liu
,
Y.
,
Wang
,
H.
,
Kirk
,
M. A.
,
Li
,
M.
, and
Zhang
,
X.
,
2013
, “
Removal of Stacking-Fault Tetrahedra by Twin Boundaries in Nanotwinned Metals
,”
Nat. Commun.
,
4
(
1377
), pp.
1
–7.10.1038/ncomms2382
11.
Jang
,
D.
,
Li
,
X.
,
Gao
,
H.
, and
Greer
,
J. R.
,
2012
, “
Deformation Mechanisms in Nanotwinned Metal Nanopillars
,”
Nat. Nanotechnol.
,
7
(
9
), pp.
594
601
.10.1038/nnano.2012.116
12.
Wang
,
J.
,
Sansoz
,
F.
,
Huang
,
J.
,
Liu
,
Y.
,
Sun
,
S.
,
Zhang
,
Z.
, and
Mao
,
S. X.
,
2013
, “
Near-Ideal Theoretical Strength in Gold Nanowires Containing Angstrom Scale Twins
,”
Nat. Commun.
,
4
(1742), pp.
1
8
.
13.
Hammami
,
F.
, and
Kulkarni
,
Y.
,
2014
, “
Size Effects in Twinned Nanopillars
,”
J. Appl. Phys.
,
116
(
3
), p.
033512
.10.1063/1.4890541
14.
Mishin
,
Y.
,
Mehl
,
M. J.
,
Papaconstantopoulos
,
D. A.
,
Voter
,
A. F.
, and
Kress
,
J. D.
,
2001
, “
Structural Stability and Lattice Defects in Copper: Ab Initio, Tight-Binding, and Embedded-Atom Calculations
,”
Phys. Rev. B.
,
63
(
22
), p.
224106
.10.1103/PhysRevB.63.224106
15.
Plimpton
,
S. J.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comp. Phys.
,
117
(
1
), pp.
1
19
.10.1006/jcph.1995.1039
16.
Phillpot
,
S. R.
,
1992
, “
Thermoelastic Behavior of Grain-Boundary Superlattices
,”
J. Appl. Phys.
,
72
(
12
), pp.
5606
5615
.10.1063/1.351960
17.
Klam
,
H. J.
,
Hahn
,
H.
, and
Gleiter
,
H.
,
1987
, “
The Thermal Expansion of Grain Boundaries
,”
Acta Metall.
,
35
(
8
), pp.
2101
2104
.10.1016/0001-6160(87)90038-1
18.
Wagner
,
M.
,
1991
, “
Structure and Thermodynamics Properties of Nanocrystalline Metals
,”
Phys. Rev. B
,
45
(
2
), pp.
635
639
.10.1103/PhysRevB.45.635
19.
Jaszczak
,
J. A.
, and
Wolf
,
D.
,
1992
, “
Thermoelastic Behavior of Structurally Disordered Interface Materials: Homogeneous Versus Inhomogeneous Effects
,”
Phys. Rev. B
46
(
4
), pp.
2473
2480
.10.1103/PhysRevB.46.2473
20.
Lu
,
K.
, and
Sui
,
M. L.
,
1995
, “
Thermal Expansion Behavior in Nanocrystalline Materials With a Wide Grain Size Range
,”
Acta Metall. Mater.
,
43
(
9
), pp.
3325
3332
.10.1016/0956-7151(95)00035-T
21.
Chen
,
D.
, and
Kulkarni
,
Y.
, “
Entropic Interactions Between Fluctuating Twin Boundaries
,” (to be submitted).
You do not currently have access to this content.